

The NA62 RICH detector

Construction and performance

Andrea Bizzeti

University of Modena and Reggio Emilia and I.N.F.N. Sezione di Firenze, Italy

on behalf of the NA62 RICH working group

- 1. The NA62 experiment
- 2. The RICH detector
- 3. RICH performances
- 4. Summary

TIPP2017 – Beijing, China – 25 May 2017

The NA62 experiment

ECN3 experimental hall

The NA62 experiment

at CERN SPS

<image>

The NA62 collaboration: ~ 200 participants, 30 Institutes

The NA62 goal

Measurement of the Branching Ratio of the decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

- Theoretically very clean FCNC loop process, sensitive to physics beyond the Standard Model
- ► SM prediction: $BR_{TH}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \times 10^{-10}$ [Buras et al., JHEP11 (2015) 033; Brod et al., PRD83 (2011) 034030]
- ► Experiments: $BR_{EX}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$ [BNL E787/E949 collab., PRD77 (2008) 052003; PRD79 (2009) 092004]
- ▶ NA62 goal: ~ 100 events, 10% precision

Schedule:

- 2012-14 Detector installation
- 2015 Commissioning run
- 2016-18 Physics run

The NA62 experimental principles

- ► Goal: 10% precision BR measurement
- ► $\approx 100 \ K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events in 3 years

Very challenging experiment

Weak signal signature

- Statistics: 10^2 • BR_{SM} = 0.84×10^{-10}
- Acceptance: 10^{-1}
- $\Rightarrow K^+$ decays: 10¹³

Huge backgrounds

- Main background: $K^+ \to \mu^+ \nu$ —
- Need rejection factor $\leq 10^{-12}$
 - kinematics: $10^{-4} \div 10^{-5}$
 - veto for muons: $\sim 10^{-5}$
 - particle identification: $\leq 10^{-2} \Rightarrow$ RICH

Decay		BR
$\mu^+\nu$	$(K_{\mu 2})$	63.5%
$\pi^+\pi^0$	$(K_{2\pi})$	20.7%
$\pi^+\pi^+\pi^-$	$(K_{3\pi})$	5.6%
$\pi^0 e^+ \nu$	(K_{e3})	5.1%
$\pi^0 \mu^+ \nu$	$(K_{\mu 3})$	3.3%

The NA62 beam

- ▶ 400 GeV/c SPS primary protons, 10¹² protons/s, 3.5 s spill
- ▶ 75 GeV/c (±1%) unseparated hadron beam, K^+ component ~ 6%
- ▶ 750 M hadrons/s \rightarrow 5 MHz K^+ decays \Rightarrow 4 × 10¹² K^+ decays/year

The NA62 detectors

- Beam and decay particle tracking
- Hermetic photon vetoes
- Particle identification

The RICH detector

Requirements:

- μ contamination in π sample [$P = (15 \div 35)$ GeV/c]: $\times (\leq) 10^{-2}$
- Time resolution $\sigma_t < 100 \, \mathrm{ps}$
- Provide L0 trigger for charged tracks

The RICH radiator [for $P = (15 \div 35)$ GeV/c μ/π separation]

Neon gas slightly above atmspheric pressure

- $(n-1) = 62.8 \cdot 10^{-6}$ at $\lambda = 300 \text{ nm} \rightarrow P_{\text{thr}}(\pi^{\pm}) = 12.5 \text{ GeV/c}$
- Good light transparency, low chromatic dispersion
- Fresh Neon injected in evacuated vessel, no purification/recirculation

The RICH vessel

- Vacuum proof steel tank 17m long, $\sim 200 \text{ m}^3$ volume
- 4 cylindrical sections of decreasing diameter
- ► Thin Al entrance and exit windows for decay particles
- ▶ Beam pipe (∅ 17 cm) going through

Mirror layout

- Mosaic of 20 spherical mirrors to focus Čerenkov light to the PMTs:
 - 18 hexagonal mirrors (350 mm side)
 - 2 semi-hex with hole for beam pipe
- 25 mm thick glass, coated with Al
 + protective thin dielectric film
- Radius of curvature: $(34.0 \pm 0.2) \text{ m}$
- ► Average reflectivity(195-650nm) ~ 90%
- D_0 (optical quality) < 4 mm

The RICH detector

Mirror support and orientation system

Al honeycomb structure, 50 mm thick, divided in two halves

- Each mirror is supported by a <u>dowel</u> in its back side
- Two Al ribbons for mirror equilibrium + orientation by rem.controlled piezo-motors

• A third vertical ribbon prevents mirror rotation

A. Bizzeti

TIPP2017 - Beijing, China - 25 May 2017

RICH mirror alignment

- 1. Preliminary laser alignment —
- 2. Final alignment using charged tracks measured by the STRAW spectrometer:
- select particles illuminating a single mirror
- compare the position of the ring centre in the PMT plane with that expected from track flight direction

The Photomultipliers

Reflected Čerenkov light collected by 2 arrays of 976 PMTs each Compact hexagonal packaging, 18 mm pixel size

- ▶ Hamamatsu R7400-U03 \longrightarrow
 - ▶ 185–650 nm (420 nm peak)
 - Gain 1.5×10^6 at 900V
 - Q.E. $\sim 20\%$ at peak
 - ► 280 ps time jitter (FWHM)
 - UV-glass window
- Custom made HV dividers
- ► Al mylar Winston cones → to optimize light collection
- quartz window between Neon and air
- TDAQ system: custom-made FE boards + TEL62

Front-End and Readout electronics RICH Front-End:

- 64 custom-made
 32-ch boards
- each one with four 8-ch discriminators (NINO chips)

RICH Readout:

 128-ch TDC daughter boards (TDCB), each housing 4 CERN HPTDC chips

- ► 5 TEL62 mother boards → (each with 4 TDCBs = 512 TDC ch.):
 - 4 for the 1952 PMTs
 - 1 for L0 trigger

Time resolution

- Detected photons (hits) of one Čerenkov ring are split in two sets
- Difference between time averages of the two sets is plotted
- Time resolution of the full ring = $\frac{1}{2}\sigma$

 Čerenkov ring average time compared with KTAG time

Time resolution of a full Čerenkov ring ~ 70 ps

RICH Particle Identification

 π^{\pm} , μ^{\pm} and e^{\pm} selected using calorimeters and spectrometer

π/μ separation

Squared mass reconstructed using:

- velocity (from RICH ring radius)
- momentum (from spectrometer)

μ+

e⁺

0

For 90% π ID efficiency a 0.8% μ mis-ID probability is observed

Arbitraty units

-0.02

0.02

π+

Conclusions

- ▶ NA62 RICH detector installed in 2014
- Commissioning run in 2015
- ▶ Physics run in 2016–2017–2018
- RICH performances fulfilling expectations:
 - time resolution $\sigma_t \sim 70$ ps
 - μ mis-ID < 1% for 90% π^+ ID efficiency

Additional information

Kinematical background rejection: missing mass

