Modeling Resource Utilization of a Large Data Acquisition System

Alejandro Santos CERN / Ruprecht-Karls-Universität Heidelberg On behalf of the ATLAS Collaboration

Outline

- Introduction
- ATLAS TDAQ
- Simulation model
 - Implementation
 - Results
- Conclusion

Introduction

- ATLAS system after Phase-2
 upgrade, scheduled for 2024-2025
 - DAQ challenges, e.g. 150 GB/s to 5 TB/s for input data rates
 - New physics requirements
- Great uncertainty on future technology and availability, very difficult to make predictions.
- Key component of DAQ system after Phase-2 upgrade is Storage Handler
 - Temporary buffer space decoupling data production from data processing.

ATLAS Phase-2 TDAQ Baseline Architecture

Plan

- Model current ATLAS TDAQ system in simulation environment
- Build confidence in the model
 - Compare simulation results against real data
- Evolve the model toward the architecture for Phase-II upgrade
 - Simulation results for this model will help us to choose technology and design for the new architecture

ATLAS TDAQ in Run 2

ATLAS Trigger and Data Acquisition (TDAQ) system

- Real-time heterogeneous computing system
 - Transport and filter ATLAS event data
 - Events processed in parallel in a computer farm
 - Readout System (ROS) stores and provides data during filtering
 - Similar role to Storage Handler after Phase-2 upgrade

Simulation Model (1/2)

OMNeT++ Simulation Model

- Simulation model
 - Simplified version of TDAQ system
 - Network is assumed to be infinite and ideal, no packet loss
- Implemented in OMNeT++
 - Robust and user-friendly discrete event simulation framework
 - Configuration files are simple
 - Modular environment with a graphical and command line interface for running many simulations in parallel

Simulation Model (2/2)

OMNeT++ Simulation Model

Simulation Overview

- Input values
 - Five minute averages of real operational data
- Output values
 - Number of Event fragments in the buffers of the ROS
 - Output bandwidth from the ROS to the PUs
 - Number of processing PUs

Simulation Data Input

- Configuration and model data for the simulation is obtained from ATLAS databases
 - Records historical operational state

10⁹ 10⁸

10⁷ 10⁶ 10⁵ 10⁴ 10³ 10²

101

- Input values to simulation are average values over five minutes of real data.
 - Some values are already averages, need to renormalize values

Simulation performance

- Simulations are run independently
- Each simulation is run for 60 simulated seconds in ~6hs (factor of 360) and takes ~2 GB of RAM.
 - Give enough time for simulation to warm-up
- And run on 4 independent machines, Intel Xeon E5645 2.4 GHz with 24 GB of RAM

ROS Occupancy

Difference (in %) between simulation and real data for the number of fragments in ROS buffers. Each bin in the plot represents a separate ROS computer, there are ~100 ROS computers

- Common ~4% shift between simulation and real data
 - Model only includes processing latency
 - Network latency and software latency are not added to the model
 - This gives an additional ~10ms latency

ROS Bandwidth

Difference (in %) between real data and simulation results for ROS output bandwidth. Each bin in the plot represents a separate ROS computer, there are ~100 ROS computers

- Most results are within 5% below real data
- Largest outlier is a ROS with a very small fragment size.
 Small changes in absolute values will have a large impact in error percentage
- TCP retransmissions and network protocol overheads are not modeled, and explain further differences

Simulation stability (1/2)

Each point in the plot represents one simulation. There are 24 simulations covering 2 hours of data.

- Analyze model result over large time window (2 hours)
- Good, stable agreement
- Outlier at minute ~70
 - Data-acquisition stopped due to external factors
 - Model assumes constant conditions
 - Conditions changed and simulation was not able to keep up with change

Simulation stability (2/2)

- Overall good agreement to within 5%
- ROS real data for bandwidth is stored as the average for one hour, data does not have better resolution
- Constant difference
 - Systematic difference
 → missing elements in the model

Conclusion

- A simulation model has been developed for studying the behavior of the current ATLAS TDAQ system
- Results produced by this model are in good agreement with the real information recorded during the second ATLAS run period
- Simulation results can be further improved by adding accurate simulation of the TDAQ system and network latencies to the model
- Upgrade of the TDAQ system architecture is planned for the years 2024-2025:
 - The simulation model can be used as the basis to studying the behavior of the future candidate architectures for the new TDAQ system