

HV-CMOS Active Pixel Sensors

CCPDs: From design simulations to testbeam

R&D for the ITk ATLAS HL-LHC Upgrade

H35DEMO 100 μm thick

Mateus Vicente (UniGE/CERN) on behalf of the ATLAS HV-CMOS UniGE collaboration

TIPP2017 – R4(5) 25/05/2017

Talk outline

- 2
- The ATLAS Inner Tracker Upgrade
- HV-CMOS Active Pixel Sensors
 - HV-CMOS sensor concept
 - H35DEMO CCPD
 - TCAD simulations
 - TCT measurements
- Assembling
 - Wafer probing and flip-chip
- Caribou DAQ system
- □ Characterization
 - Testbeam measurements
- Summary and Conclusions

mvicente@cern.ch 25/0.

ATLAS Inner Tracker

3

All-silicon tracker upgrade

Luminosity upgrade on LHC to improve measurements and searches

ATLAS Inner Tracker HV-CMOS CCPDs

New HV-CMOS technology being investigated

- High Voltage can be applied on silicon sensor bulk (for fast charge collection like on planar sensors) where the transistors of a readout CMOS circuitry is also implanted
 - CMOS transistors shielded from bulk HV by Deep N-well implant (sensor collecting diode)
 - The signal generated by a particle in the sensor bulk is already processed in the sensor
 - Amplification of the signal to cope with a capacitive coupling between sensor and readout chip

General description

5

- Demonstrator Pixel Sensor chip implemented in a **350 nm HV-CMOS** process
 - Dixel pitch of 50x250 μm (matching FE-I4 readout chip foot print)
 - **Different** pixels and **readout types** with differences in the **electronic circuits**
 - All pixels flavors has the same implants structure

HV D CA			V _{DD} GND GNDV _{DD} V _{DD} □ □ □ □ □ □ ↓nMOSipMOSi			
SP	n* SNTUB	SP	n" p n p n p n SN SPTUB	SP	SNTUB	SP
DP		DP	DPTUB	DP		DP
	DNTUB		DNTUB		DNTUB	
p substrate					hv-am	s 0.35 µm

mvicente@cern.ch

25/05/17

Pixel cross section schematic

TCAD simulations

- **TCAD simulations** to analyse design of the pixel implants and circuit transistors
 - Different wafer resistivities available from the foundry
 - **20, 80, 200** and **1000** Ohm*cm
 - Difference between devices **biased** from the **top** and from the **back**
 - Study of sensor general features and behavior
 - Leakage current; charge collection (from drift and/or difusion); signal evolution; etc...

TCAD simulations – Different resistivities

Comparison of the electric field between 20, 80, 200 and 1000 Ohm*cm

 While lower resistivities has higher electric field close to the collection diode, higher resistivities leads to larger depletion zone

TCAD simulations – Different biasing

- Possibility to process the devices back side, allowing to bias the sensor from the back plane (opposite to the collection diode)
 - Visible effect on electric field intensity and charge collection efficiency
 - Larger depletion zone for the same bias voltage
 - Combined with higher substrate resistivity can lead to faster and higher charge collection

8

mvicente@cern.ch 25/05/17

TCT measurements – Setup

9

Red (660 nm) and infrared (1060 nm) laser for top and edge TCT measurements

TCT measurements – Top surface scan

- 10
- □ Scan over the surface with a 1064 nm laser
 - Record of each current pulse generated by the laser hit on each position
 - Penetration depth of ~1 mm
 - Clear visibility of pixel collection diodes

TCT measurements – Top surface scan

Charge collection (efficiency) within one pixel in a 200 Ohm*cm sample

11

Laser beam focused on the middle of the pixel middle diode VS between pixel collection diodes

Edge TCT measurements – Edge surface scan

 Edge laser scans on the device allows to simulate different bulk depth interactions (infrared laser)

- Hits inside the depletion zone will create a faster charge collection (and a higher collection within a small integration time)
- Voltage scans shows how the depletion zone grows

eTCT measurements – Depletion depth VS Bias

- Depletion depth of sensors with different resistivities
 - Depletion depth fit with $d = 0.3 \cdot \sqrt{\rho \cdot (V_B + V_{bi})}$
 - Agreement with TCAD simulations under verification

Dr. Benoit

Flip-chip machine

25/05/17

mvicente@cern.ch

Vortex based chiller

H35DEMO wafer probing HV-CMOS IVs

- Semi-automated operation wafer prober
 - Thermal Chucks from -60°C to 300°C
 - **Δ** XYZ Resolution: **0.2 μm**

15

• Auto XYZ and theta correction for sub-micron stepping

......

- Automatic die size measurement and wafer mapping tool
- Programable tests over full wafer
 - Current vs Voltage on each (sub)die automatically (~50 devices/hour)

H35DEMO wafer with probes positioned

Probes positioned on HV pads

Flip-chip for CCPDs H35DEMO + FE-I4

- Heating up to 400 degC and force applied by bonding arm up to 100 kgf
 - H35DEMO+FE-I4: 100 degC (for 6 min) and 5N bonding force
 - Automatic glue (Araldite 2011 epoxy resin) deposition on H35DEMO
- Post bonding accuracy ~1 µm achieved
 - $< 0.5 \ \mu m$ (theoretically)
 - **PixelShop** pattern-recognition program to guide alignment

CLICpix (left) and CCPDv3 (right) pixel pads

16

Set Accura 100

25/05/17

CaRIBOu System HV-CMOS DAQ – <u>GITLAB LINK</u>

- A FPGA based modular readout system for silicon detectors
 - Developed at BNL with collaboration from UNIGE and CERN for ATLAS and CLIC
 - Modular architecture allows for integration of new readout chips and sensors
 - Adrian's talk (CERN): <u>http://indico.ihep.ac.cn/event/6387/session/38/contribution/24</u>
 - Hongbin's talk (BNL): <u>http://indico.ihep.ac.cn/event/6387/session/52/contribution/260</u>

Testbeam results

The FE-I4 UniGE Particle Telescope

FE-I4b based telescope

18

- "Permanently" installed at CERN SPS H8 testbeam hall
- 6 planes of double FE-I4b modules (HSIO/RCE redout) (+ 2 Mimosa26 planes being installed)
 - Current: 8x12 μm. With Mimosa26 planes: 2-3 μm
- Cold DUT box (down to **-20 degC** @ DUT)

25/05/17 mvicente@cern.ch

sample

board V1 with FE-14 | H35DEMO

H35DEMO Testbeam results

CERN SPS - Nov 2016

- 200 Ohm*cm H35DEMO Analog Matrix 1 studied
 - Caribou H35DEMO 01 sample
 - CERN SPS 180 GeV pions beam
 - 1000 e⁻ FE-I4 threshold
 - **99%** of collected charge within **50 ns** (left plot)
 - 99% efficiency for bias voltages > 90V (right plot)

H35DEMO Testbeam results

Fermilab TestBeam Facility – 2017

- Testbeam campaign at FTBF IL/USA
 - 120 GeV protons beam
 - Samples with 4 different resistivities
 - + voltage and threshold scans
- Preliminary results!

20

High efficiency for all 3 pixel types in both analog matrices

- Some samples with **non uniformity** in the **efficiency**
 - Cross-section measurements shows a chip gap variation of ~7µm

Conclusions

and overview

- New all-silicon inner tracker → large area of silicon → \$\$\$
- HV-CMOS based sensor/readout chip is a candidate for the new detectors
 - H35DEMO HV-CMOS detector demonstrator chip
- TCAD simulations are done to evaluate sensor performance
 - **Top and edge TCT measurements** are done in order to verify achieved performance
 - **Agreement** between simulation and measurements is **satisfactory**
 - Results indicates **better performance** on sensors with **higher bulk resistivities** and **back biased** devices
- Assembly of HV-CMOS sensor with readout ASIC
 - H35DEMO Wafer IV scan ensures a good production yield and saves time/money
 - H35DEMO + FE-I4b flip-chip gluing using Araldite 2011 Epoxy Resin → cheaper production
- **Testbeam results** using the **CARIBOU** DAQ system
 - First sample tested at SPS indicates high efficiency (~99%) with 99% of the charge collected in 50 ns
 - **Fermilab** testbeam **data** is still **under analysis. Good efficiency** on pixel matrix is **already observed**

Future

and next steps

- Further tests on capacitively couples pixel (irradiated) devices
 - Cheaper implementation for larger areas by not using bump-bonds
 - Pixel sizes < bump-bonds pitch restriction</p>
- Investigation on MAPS (monolithic detectors)
 - **Standalone** readout matrices of **H35DEMO**
 - Before and after irradiation
 - New 180nm CMOS demonstrator AtlasPix chip
 - Previous 180nm prototype results:
 Before irradiation https://aps.arxiv.org/pdf/1603.07798.pdf
 After irradiation https://arxiv.org/pdf/1603.07798.pdf
- Stay tuned for new results =)

22

mvicente@cern.ch

H35DEMO Analog pixel flavors

Analog Matrix 1

CSA uses a folded-cascode with an nMOS transistor as input device without gain boosting > less noise, better radiation tolerance, increased power consumption

Flavour 1	Flavour 2
use linear transistors	use enclosed layout transistors

Analog Matrix 2

CSA uses a folded-cascode with a pMOS transistor as input device							
Flavour 3	Flavour 2	Flavour 1					
with DPTUB for HV High Gain	without DPTUB for HV High Gain	without DPTUB for HV Low Gain					

Flip-chip at UniGE

CLICpix + CCPDv3 with PixelShop

PixelShop

25

- Pictures from flip-chip digital cameras
 - 2 cameras with field of view of 900x700um
 - 0.37 um/pixel
- C++ and OpenCV framework
 - Enhance pictures contrast for better contour finding
 - Calculate offset between contour geometric center

CLICpix original picure

CLICpix edited picure

Vertical pads offset

للعنجا	لهجا	ليعتبد
Pixel	pads	contour
CLICp	ix and	CCPDv3

CERN

mvicente@cern.ch 05/

05/04/17

CaRIBOu System

CaR board ressources

- 8 × general purpose power supplies with monitoring capabilities
- 32 × adjustable voltage output (0 4 V)
- \square 8 × current output (0 1 mA)
- \square 8 × voltage input (0 4 V)
- ADC (16 channels, 65 MSPS/14-bit)
- $\Box \quad 4 \times \text{ injection pulser}$
- I2C bus
- TLU RJ45 input (clock and trigger/shutter)
- \Box general CMOS signals (10 × outputs, 14 × inputs)
 - with adjustable voltage levels (0.8 3.6V)
- □ 17 × LVDS pairs

FE-14 + H35DEMO @ Fermilab 2017

26

CERN