ANNIE: The Accelerator Neutrino Neutron Interaction Experiment:

Phase I Status and Phase II plans

2017-5-25 TIPP, Beijing

Outline

- ANNIE goals
- ANNIE detector
- Status of ANNIE Phase I
- Plans of ANNIE Phase II
- Summary

ANNIE physics goal

• A Water Cherenkov detector deployed at the Fermilab BNB beamline.

Primary Physics goal:

- A measurement of the abundance of final state neutrons ("neutron yield") from neutrino interactions in Gd-doped water, as a function of energy. (arXiv:1504.01480).
- Significant impact in:
 - Neutrino-nucleon interactions physics
 - Proton decay searches
 - Supernova neutrino observations

 Theoretically: This depends on nuclear physics that is not well understood

 Experimentally: to date, the neutron yield has not been well measured

Energy of the neutrino interaction

How many neutrons are

knocked out of water?

ANNIE is a test for new technologies:

- The first use of Gd-doped water in a beam experiment: large capture cross section for final state neutrons from neutrino interactions.
- Large-Area Picosecond Photodetectors (LAPPDs) (<100 ps time resolution) in a neutrino experiment for the first time! Use of precision timing to localize interaction vertices in the small fiducial volume

ANNIE detector

Jingbo Wang, TIPP, 2017 -5-25, Beijing

ANNIE phased approach

- Phase I Test experiment (2015 2017):
 - Build detector
 - Measure neutron backgrounds
 - Ready to test first LAPPDs
- Phase Ib (2017)
 - Demonstrate LAPPD readiness
 - Test and characterization of LAPPD+PSEC
- Phase II: Physics run (2017 2021)
 - Physics Run (1 year) with full Gd-doped water, enhanced PMT coverage (130), limited LAPPD coverage (about 5 LAPPDs), focus on CCQE-like events.
 - Physics Run (2 years) with full LAPPD coverage (up to 20 LAPPDs), study neutron yields for CC, NC and inelastic scattering

Slide 6

Phase I status

- Built and commissioned the detectors
 - Filled with 26 tons of ultrapure water
 - Equipped with 60 8-inch PMTs at the bottom
 - 2 MRD layers

Measured rate of background neutrons

- Movable neutron capture volume (NCV)
- NCV filled with 0.25% Gd-loaded liquid scintillator (EJ-335)
- NCV optically coupled to two PMTs
- NCV isolated from the rest of the tank
- NCV calibrated by 2.5 μCi Cf-252 source.
- Achieved stable data taking gained experience

Jingbo Wang, TIPP, 2017 -5-25, Beijing

Jingbo Wang, TIPP, 2017 -5-25, Beijing

Phase I data analysis

- Observed cosmic muons and beam neutrinos using 60 bottom PMTs
- Measured neutron captures using NCV, both from the beam and a calibration 252-Cf source
- The long-lived excess events after the beam indicates neutron capture detection

Position #1 beam NCV events

252-Cf source NCV event times (position #1)

Tested a working PSEC electronics

Began work on the waterproof housing and the LAPPD holder

New mechanical design allows LAPPDs to be installed in the existing ANNIE detector

Moving to Phase Ib

Completed an LAPPD test facility

and characterized one 6 cm MCP

prototype LAPPDs (from Incom.)

detector (from ANL) and two

Top lid of ANNIE tank

LAPPD test facility

Plans for Phase II

- Need additional PMT coverage and up to 20 LAPPDs as well as electronics in order to carry out the physics measurement of ANNIE
 - Move the tank to staging area _
 - Refurbish the MRD to enable all 10 layers
 - Reconfigure the inner structure to install full complement of — PMTs and LAPPDs.
 - Fill ultrapure water loaded with 0.2% of Gd sulfate
- A lot of simulation/analysis work ongoing

Slide 11

20 LUX 10" PMTs 22 ETL (LBNE) 11" PMTs

Rat-pac (V. Fischer)

Potentially 60 SuperK 8" PMTs

- Need to design PMT holders to mount PMTs to the top and side of the inner structure.
- PMTs to be tested at UC Davis

45 WATCHBOY 10" PMTs

LAPPD status

12

13

- Incom has now produced multiple LAPPD prototypes, quickly approaching the specifications needed by ANNIE
 - Tile #9 fully sealed detector with an aluminum photocathode
 - Tile #10 sealed detector with multi-alkali photocathode (~5 % QE)
 - Tile #12: ~10% QE
 - Tile #13: half the photocathode with >20% QE
 - Tile #15: uniform photocathode >25% QE
- Tile #12 tested at ISU: 32 ps time resolution for multi-PE (see backup slide)

Please refer to Incom's talk in the photodetector session

Basic reconstruction concept

1st Step:

- Conceptualize Cherenkov light as coming from a point source...
- Calculate hypothesized time (Δt_{hyp}) for the photon to reach the detector
- Adjust the point location to minimize the point time residual

2nd Step:

• Adjust the point location and the track direction to minimize the extended time residual (Δt_{hyp})

Vertex reconstruction in Phase II

Comparison between LAPPDs and PMTs

- Sandbox simulation files: 20% LAPPD coverage VS 20% PMT coverage
- 500 events
- 122 LAPPDs (100 ps time resolution) or PMTs (1 ns time resolution)
- Simulate a range of neutrino energies
- Reconstruct full muon tracks

Jingbo Wang, TIPP, 2017 -5-25, Beijing

Vertex reconstruction in Phase II

Study on the number of LAPPDs

Jingbo Wang, TIPP, 2017 -5-25, Beijing

Summary

- ANNIE Physics goal:
 - Measure the neutron yield from neutrino interactions in Gd-doped water, as a function of energy
- ANNIE Technical goal:
 - First Gd-doped water Cherenkov detector to run in a neutrino beam
 - First application of LAPPDs in water and for high energy physics
- ANNIE Phase I is measuring the neutron background at different positions
- LAPPD readiness is well underway: currently being tested, water proof housing and mechanical design available.
- ANNIE Phase-II (2017 2021) with the deployment of LAPPDs is being planned. Simulations and analysis are under way to determine the track reconstruction capability as a function of the number of LAPPDs

Thanks for your listening!

Jingbo Wang, TIPP, 2017 -5-25, Beijing

Jingbo Wang, TIPP, 2017 -5-25, Beijing

Neutron Capture Volume (NCV)

Neutron background source:

- Dirt neutrons: Neutrons originating from neutrino interactions downstream of the dump.
- Skyshine neutrons: Neutrons from the beam dump entering the detector.

Neutron Capture Volume (NCV) vessel

- Movable 50 cm x 50 cm acrylic
- Filled with 0.25% Gd-loaded liquid scintillator (EJ-335)
- Optically coupled to two PMTs
- Optically isolated from the water volume

NCV calibration

- 2.5 μCi Cf-252 source (5.4 mCi in Jan 1988) and LYSO crystals
- Gammas from fissions (3.092% branching ratio) induce scintillation in LYSO crystal

ANNIE

Jingbo Wang, TIPP, 2017 -5-25, Beijing

Neutron source calibration

- A triggered Cf252 source is used to understand the NCV response to neutron captures
- LYSO crystals
 - 176-Lu (2.6% natural abundance) is unstable to beta decay
 - High threshold to suppress beta decay background (low trigger rate)
- Trigger PMT watches scintillating LYSO crystal for prompt γ rays from fissions
- Two PMTs watch the NCV
- Tank PMTs used to veto cosmic ray muons
- Goals:
 - prove we can see neutrons
 - measure the efficiency of the NCV

PMT Data Acquisition Setup

Julie. He, UC Davis

Jingbo Wang, TIPP, 2017 -5-25, Beijing

LAPPD test at ISU

M. Wetstein, ISU

Jingbo Wang, TIPP, 2017 -5-25, Beijing