Mobile Technology for PMT readout

EVELOPMENT FOR CHIPS AND ICE-TOP J.Kelly, A.Loving, D.Tosi, J.Thomas, J.Troken-Tenorio, C.Wendt* WIPAC (UW Madison) and UCL

<u>Outline</u>

- Motivation and Orientation
- Architecture
- Timing measurement methodology
- Pulse shape measurement methodology
- Connection between ARM processors, WR
- Outlook

Motivation and Orientation

- The CHIPS goal
 - prove that water Cherenkov detector can do oscillation physics for a fraction of the cost of present neutrino detectors
 - to \$200k/kt (presently \$2-10M/kt water, \$10-20M/kt Liquid Argon) including location/infrastructure etc
 - contribute to constraining δCP using NuMI neutrinos in the short term
- CHIPS will be sunk in a flooded mine pit in the path of the NuMI beam
- It starts with 5 kilotons in summer 2018,

Hit Map 2000 v_{θ} CC Events

PMT Choice and Layout

- Traditional system would need
 - PMT+base+
 - HV system+
 - HV-cable+
 - connectors+
 - readout-cable
- This is prohibitive for thousands of PMTs, 100's m of cable per channel because of cost and cable bulk

Hit Map 2000 v_{θ} CC Events

PMT Choice and Layout

- Layout will have both high and low density planes
- A big part of the instrumentation will just implement KM3Net technology
 - New 3" PMTs at 6% coverage in front and end caps, and 3% coverage back end cap region
 - ready designed electronics which does what we want
- Low density wall planes will be made with donated NEMO-III 3" PMTs and Madison electronics.
 - Old 3" PMTs at 3% coverage in back

µDAQ Board Block Diagram : SiPM and PMTs

CHIPS specific

- Idea is to produce dedicated micro-processor for reading out the TOT on each PMT
- Each μ DAQ board will have ~1ns absolute time signal from WR
- Will provide PWM input to CW base
- µDAQ will communicate with BeagleBone over LVDS
- BeagleBone will bundle up hit packets and send them on Ethernet to WR switch

CHIPS CW-base for Hamamatsu R6091

+ve CW base adapted from COUPP design at FNAL: added more stages

AC Voltage generator

Circuit designed for COUPP

- 5V power supply
- NLAS4684 IC Switch changes output to transformer from +5V to -5V based on input signal
- When run near resonant frequency of 207kHz it gives a sine wave (essentially a 5V AC Voltage)
- Instead of using the transformer in the schematic we used a design from Chris
 - Two unshielded inductors coupled through the board

Averaging multiple delayed inputs gives finer time bins

Diagram of captured counter values (=time)

- Eight registers record each edge... average value tells more precisely when the edge arrived
- Clock time 5.555ns

Response for edge at time T

Linux Board and WR Fanout Board

- BB also needed for reprogramming with software updates (bootloader)
- Fanout Board has a CAT-6 style connection to each MicroDAQ board, carrying:
 - Timing signals from White Rabbit node (WR-LEN)
 - 10MHz & PPS/IRIG-B
 - 24VDC power, each PMT can be switched on/off by BB control signal
 - LVDS communication with BB
 - Requires multiplexing, because BB provides only 4 serial ports
 - Alternate pathways can be enabled by BB control to allow full-duplex communication with bootloader in each µDAQ

Linux Board and WR Fanout Board

- All communications with ICL go through the Linux board (BeagleBone, "BB")
 - BB polls the 16 PMT µDAQs forwards data as regular ethernet traffic over optical fiber (White Rabbit)

- BB also needed for reprogramming with software updates (bootloader)
- Fanout Board has a CAT-6 style connection to each MicroDAQ board, carrying:
 - Timing signals from White Rabbit node (WR-LEN)
 - 10MHz & PPS/IRIG-B
 - 24VDC power, each PMT can be switched on/off by BB control signal
 - LVDS communication with BB
 - Requires multiplexing, because BB provides only 4 serial ports
 - Alternate pathways can be enabled by BB control to allow full-duplex communication with bootloader in each µDAQ

Ice-Top overview

µDAQ in IceTop Scintillator Station

µDAQ Board Block Diagram : specific for Ice Top

Pulse Shapers for Sample & Hold ADCs

- Shaper is included after one or more stages of amplification, before 12 bit ADCs
- Linear (RLC) network, instantaneous output measures integral of #SPEs
- Similar in concept to simple integrator, but tuned for SiPM signal shape and exhibits flat top response followed by quick return to baseline
 - Measured charge will not vary much if sampling time is shifted by 5.5 nsec (such shifts can happen due to the scheme of using μP to program sampling delays)
 - Samples at times T_i measure $\int (dN/dt) dt$ from 0 to $T_i \rightarrow Arrival$ time profile

Amplifiers Testing & Redesign Experiences

- Illumination is laser diode, pulses with ~16 SPE delivered via optical fiber
- Using SensL 6mmx6mm, µDAQ in freezer (-62C)
- Bias generated with µDAQ supply, set for 26.3 volts
- SPE amplitude is 15mV at discriminator input; still easily resolve peaks
 - High gain ADC would register around 19 counts per SPE
 - Low gain channel should saturate around 70000 SPE

µDAQ Board Prototype Versions 1 & 2 ... & 3

uDAQ V2

Board size 1.75" x 5"

uDAQ V1

- V2 adds amplifiers and bias voltage for two SiPMs, also wide dynamic range
- Many smaller changes is completely new layout

- V1 had a single preamp for a PMT, no SiPM-specific circuitry
- Used for testing amplifier & discriminator, time capture concept, communications (& lower level items like power circuit, µP programming interface, etc)
- Hosted various add-on prototyping boards to test SiPM preamp options
- V3 coming soon : just CHIPS functionality, lower power, smaller (150mW)

<u>Summary</u>

- PP can ride a revolutionary wave in electronics development
 - ARM processors, both on PMT and as controller (BB or Rpi) to collect signals and transmit to Ethernet
 - Each PMT provides ToT and receives 1ns absolute timing signals (10MHz and PPS) from WR system \$25/channel total (CW,mD,WR)

- Side comment: Industrially available ASICs in version 100 (ish): home grown electronics is typically in version 2-5.
- The combination of cheap processors such as Raspberry Pi, BeagleBone and Arduino, combined with the WWW means progress goes incredibly fast as solutions are known instantaneously
- Developers are like the Borg: and resistance is futile..

Sample & Hold ADCs

- Each ADC is single 12-bit sample
 - MAX11665 / Analog bandwidth 40MHz / \$2
 - V2 board has 16 of these, can be wired to low, medium or high gain preamp/shaper output
 - Readout via SPI, 2µsec
- Timing signals from µP close the sample & hold window at certain delays after T_{start}
 - Utilizes circuits built into µP
 - Eight individual times available in V2 design
- Delays set up in software, e.g., measure integrals from 0-10ns, 0-30ns, 0-50ns, 0-100ns
 - Arrival time profile

How time capture works

- Internal microprocessor clock is synchronized to White Rabbit via timing inputs
- Internal clock counters increment +1 after every 5.55nsec
- Use built-in "counter capture" registers to record photodetector pulse times
 - ➡ Integer multiple of 5.55nsec

Response to a Discriminator Trigger

- Read ADC values via SPI interface (8Mbps, 4 chan's)
- Package hit data, add to buffer (128KB RAM)
- Reset trigger logic & enable