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@® Introduction
Motivation

COsmic BAckground Neutrino Decay (COBAND) experiment
@® R&D of Superconducting Tunnel Junction (STJ) Detector



Motivation of Search for Cosmic Background Neutrino Decay

® Only neutrino mass is unknown in elementary particles. Detection of neutrino decay
enables us to measure an independent quantity of Am? measured by neutrino
oscillation experiments. Thus we can obtain neutrino mass itself

from these two independent measurements.
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Using Am’, = (2.43+0.09)x10°eV?
E, =10~25meV at v, restframe.
(Far - Infrared region A =50~125 u)
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® As the neutrino lifetime is very long, we need use cosmic background neutrino to
observe the neutrino decay. To observe this decay of the cosmic background
neutrino means a discovery of the cosmic background neutrino predicted by

cosmology.

® Left-Right symmetric model predicts the neutrino lifetime larger than 10!7 year

while the standard model predicts 2 x 104 year.
Measured neutrino lifetime limit T > 3 x 1012 year.



Big-Bang Cosmology
and Cosmic Background Neutrino (CvB)
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* A few seconds after Big Bang — Cosmic Background Neutrino (CvB)

became free.
* 300,000 years after Big Bang — Cosmic Microwave Background (CMB)
3

became free.



Signal of Cosmic Background Neutrino Decay and its Backgrounds

Rocket experimeL\t co»verage (A=40~80um)
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Requirements for the detector
® Continuous spectrum of photon energy around E,,~25 meV(4 = 50um)

® Energy measurement for single photon with better than 2% resolution for
E, = 25meV to identify the sharp edge in the spectrum

® Rocket and/or satellite experiment with this detector



COBAND (COsmic BAckground Neutrino Decay Search) Experiment

Rocket Experiment  Plan: Sminutes data acquisition at 200 km height in 2019.
Improve the current limit of lifetime t(v,) by two orders of magnitude ( ~10'*years).
»Superconducting Tunneling Junction (STJ) detectors in development
> Array of 50 Nb/AlI-STJ pixels with diffractive grating covering 4 = 40 — 80um
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Satellite experiment after 2020 —  sensitivity of T(v;) ~10!"year

> STJ using Hafnium: Hf-STJ for satellite experiment ( S. H. Kim et al. JPSJ 81,024101 (2012) )

® A = 20ueV : Superconducting gap energy for Hafnium
® Nyp = 25meV/1.7A = 735 for 25meV photon: AE/E < 2% if Fano-factor is less than 0.3



STJ (Superconducting Tunnel Junction) Detector

* Superconductor / Insulator / Superconductor Josephson Junction

Superconducting Tunnel Junction . . . . .
v . At the superconducting junction, quasi-particles over

msusor their energy gap go through tunnel barrier by a tunnel

effect. By measuring the tunnel current of quasi-

particles excited by an incident particle, we measure
S .

2 the energy of the particle.
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6 Hafnium 0.13 0.021




Nb/Al-STJ Photon Detector

Nb Back tunneling Effect — Trapping Gain
= ﬁOx * Quasi-particles near the barrier can mediate
Cooper pairs, resulting in true signal gain

* Bi-layer fabricated with superconductors of different
gaps Ayp,>A 4 to enhance quasi-particle density near
the barrier

300nm I
* Nb(200nm)/Al(70nm)/AlOx/Al(70nm)/Nb(100nm)
Anp/a; = 0.57meV

Number of Quasi- « Gain: 2~200 (10 for Al)
particles in Nb/AI-STJ

E Response of Nb/Al-STJ to Viéible laser light pulse
Ny =Gy 50/1 7 (A=465nm) at 350mK

G, : Trapping Gain in Al(~10)
E, : Photon Energy

A : E-Gap in superconductor A it
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1.7 *0.57 meV |
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Current (nA)

Temperature Dependence of Leakage Current

1000

Leakage Current of Nb/Al-STJ

® Leakage current I, is required to be below 0.1nA to detect a single far-
infrared photon (A= 40 -80um) .
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k] STJ size # of samples leakat 0.3mV

50 x 50pm? 18 224429 pA
20 x 20 um? 7 39+13 pA
10 x 10 um? 20 14+7 pA

In 2014,

AIST group joined us and produced
Nb/AI-STJ with AIST CRAVITY
processing system.

Leakage current has satisfied our
requirement of 0.1nA .




R&D of SOI-STJ Detector

FD-SOI (Fully Depleted Silicon-On-Insulator) FD-SOI -MOSFET
device was proved to operate at 4K by a
JAXA/KEK group (AIPC 1185,286-289(200 FD-
SOI 9)). It has the following characteristics:
low-power consumption, high speed, easy large
scale integration and suppression of charge-up
by high mobility carrier due to thin depletion
layer(~50nm).

Gate Gate

Drain Source ! Drain

Source

To improve the signal-to-noise ratio and to make multi-pixel device easily, we made a
SOI-STJ detector where we processed Nb/AlI-STJ on a SOI transistor board.

Nb/AI-STJ
Gate, | Source

Square is 2.9 mm on a side. STJ Brain SOI preamplifier

© Rey.Hori / KEK



Performance of STJ and SOIFET in SOI-STJ detector

We observed the signal of Nb/AI-STJ Sigal

processed on the SOI board to l (1.5 s)

465nm laser pulse at 700mK. 500uV /DIV. = IE8
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SOI Cryogenic Amplifier

SOI-STJ4 (the 4t prototype)

Vaal Va2 We updated the SOI cryogenic
Amplifier for Nb/AI-STJ.

V2 : E Amplification
Replace the resistance by a
M4 SOIFET as a current source (M2).

V3 o C1 SUTPUT Use the feedback between the
H C drain and the gate of M1 to apply

M1 M5 a stable bias voltage (M3).

: Buffer

Add the follower to reduce the
output impedance (M4 and M5S).

L

Designed the ratio (W/L) to set the
operation power consumption below
120uW.

This SOI amplifier board was made by LAPIS semiconductor company. 11
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Test Results of the SOI Cryogenic Amplifier

Ampliﬁer:r Bc}lffer

Input and Amplified Output
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Setup of STJ Signal Amplification with the SOI Cryogenic Amplifier

—AM—
— 10M
T~350mK |
777 (*He sorption)
2
465nm laser |

through optical I .
fiber - 4TeF | 218 Output
e
Inpu
Monitor

20pm-square Nb/Al-STJ with SOI-STJ4 amplifier through 4.7pF capacitance.
Input impedance of the SOI amplifier is about 20Kk€.
— STJ operation at a constant current mode.

— STJ bias cable capacitance is around 1nF:Z=160€2 for 1us signal.



STJ signal amplified with the SOI cryogenic preamplifier

Nb/AI-STJ laser light response signal was amplified with this SOI cryogenic
amplifier.

i

STJ signal to visible laser A= 465nm, 20kHz | Temperature : 350mK

~J

P llSu\/

Amp.IN [pVv]

400 80 40 -40 20 0 20 4 60 8 100 time [psec]
| STJ amplified signal with the SOI cryogenic ampliﬁer

: : : : : : : : : |

e e Temperature 350mK
£ 120 iu‘rwf”(“ 1 2"“’

Ampllﬁcatlon Gain : 70

- S/N improved by a factor of 2

100 80 40 40 20 0 20 40 60 8 *100 time [psec]
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Latest Results of Hf-STJ R&D

L ] 3 L4

We made a thin aluminum layer (9nm) on the HfO R
layer (1-2 nm) to improve the insulation of the TEQUeS 4
HfOy layer. Hf/Al/HfOy/Hf-STJ ER

Al(9nm)
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Laser triggeéer pulse

ST ] Voltage Visible light laser (A=465nm) 10Hz duration

- 120 IS ' ' Response speed (120us) is slower than
s Nb/Al-STJ response speed ( around a

g few us).
40us/div )

More details of the Hf-STJ R&D results 1s presented in the poster session by K. Takemasa
(P1-13). 15



Summary

® R&D of STJ detectors and the design of the COBAND rocket experiment are

underway.
> Determination of the neutrino mass
O origin of elementary particle mass spectra
> Discovery of the cosmic background neutrino

O new probe of the very early universe

® New far-infrared photon detector is being developed:

» Nb/AlI-STJ satisfied our requirement for leakage current less than
0.1nA

» Cryogenic amplifier with the SOI technology worked at 300mK
We have succeeded in amplifying the STJ signal with the SOI

cryogenic amplifier.
Aiming at one photon detection in the far-infrared range

»> applicable to the other fields such as X-ray energy measurement
with higher energy resolution.

COBAND WEB page  http://hep.px.tsukuba.ac.jp/coband/eng/
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Development of SOI Charge sensitive preamplifier
(SOI-STJ)S)

®STJ capacitance is not so small
( 20pF for 20pm square STJ).

®STJ response speed is a few psec. 523,
®STJ operation at a constant voltage o :::;i%ie
mode is favorable. pre-amp.

— Low input impedance
charge amplifier
operational for 1MHz.
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Op-amp Circuit for STJ (SOI-STJS design)

Test of this cryogenic charge telescopic cascode differential amplifier
amplifier is now underway. . Feedback C=2pF x R=SMQ = 10ps_
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Neutrino Mass Relations
and Expected Photon Energy Spectrum

- Decay Photon Energy Spectrum
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Zodiacal Emission

Thermal emission from the interplanetary dust cloud
2hv 1

[ =
v c2 exp(hv/kT) -1
xA( x 10~ ) Wm—2sr—1
eT=270K,A=6x%x10"8 B =0.3
* h [Js], c [m/s], A [m]

Zodiacal Emission(ZE) is overwhelmingly dominating. Here
we consider only ZE as the background.



Zodiacal Emission
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Sensitivity to neutrino decay

Parameters in the rocket experiment simulation

* telescope dia.: 15cm

* 50-column (A: 40um — 80 um) x 8-row array

» Viewing angle per single pixel: 100urad x 100urad
* Measurement time: 200 sec.

» Photon detection efficiency: 100%
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« If v, lifetime were 2 x 10" yrs, the signal significance is at 5c level
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STJ Energy Resolution

STJ Energy Resolution

o, =+/1.7A(FE)

Using Hf as a superconductor,

A: Band gap energy
F: Fano factor (=0.2)

E: Incident particle energy

o, E=17% at E=25meV
T (K) | A(meV) Tc : Critical Temperature
Niobium — 3.20  1.550 Operation 1s done at a temperature
Aluminum 1.14  0.172 around 1/10 of Tc
Hafnium  0.13  0.021

N

We reported that Hf—STJ worked as a STJ in TIPP2011.
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STJ back tunneling effect

* Quasi-particles near the barrier can mediate Cooper pairs, resulting in
true signal gain
* Bi-layer fabricated with superconductors of different gaps Ay,>A, to enhance
quasi-particle density near the barrier

* Nb/AI-ST) Nb(200nm)/Al(10nm)/AlOx/Al(10nm)/Nb(100nm)
* Gain: 2~200

Nb Al Al Nb

25



Performance of SOIFET at Cryogenic Temperature

Saturating current is higher as the temperature At cryogenic temperature (3K),

becomes lower. Threshold rise in 1 -V, curve become much
sharper.

Non-linearity was found at cryogenic temperature Subthreshold current is suppressed.

near threshold region. This problem was solved by
improving LDD(Lightly Doped Drain).
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Test Results of the cryogenic SOI preamplifier
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is enough high for
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Temperature Dependence of I-V curve
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Threshold voltage 1s changed. But the other properties are
almost unchanged.



Test Results of Nb/AI-STJ with Far-Infrared laser

Far-Infrared Laser at University of Fukui

* Nb/AI-STJ Response to Far-Infrared Laser
( A=57.2um ) / P
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« 20um-square Nb/AI-STJ made at AIST CRAVITY system
» Laser light was turned on and off with a chopper at a frequency of 200Hz.

Measured the change of the |-V curve between the laser on and off to be
50~100nA in current.



