MiniDAQ1

A COMPACT DATA ACQUISITION SYSTEM FOR GBT READOUT OVER 10G ETHERNET
Overview

- LHCb upgrade
- Optical frontend readout
- Slow control implementation
- Fast control implementation
- DAQ & Ethernet implementation
- Transition to MiniDAQ2 and final architecture
The LHCb experiment

One of the 4 major experiments at the Large Hadron Collider under the French-Swiss border.

Single arm forward spectrometer for accurate measure of B meson decays. A collaboration between 69 universities and laboratories from 16 countries. In operation since 2009.
LHCb Run 3 upgrade

- Remove L0 hardware trigger
 - L0 saturation at high luminosity
- Send full event rate to HLT
 - 1 MHz → 40 MHz
- Higher event size
 - 50 KB → 100 KB
- Zero suppression on frontends
- New readout electronics
- Frontend readout over new protocols

<table>
<thead>
<tr>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
</tbody>
</table>

LS 2 | Run 3 | LS 3

LHCb Run 2 Trigger Diagram
- 40 MHz bunch crossing rate
- L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures
 - 450 kHz h^2
 - 400 kHz μ/μ
 - 150 kHz e/γ

LHCb Run 3 Trigger Diagram
- 30 MHz inelastic event rate (full rate event building)
 - Software High Level Trigger
 - Full event reconstruction, inclusive and exclusive kinematic/ geometric selections
 - Buffer events to disk, perform online detector calibration and alignment

12.5 kHz (0.6 GB/s) to storage

2-5 GB/s to storage
Optical frontend readout

Versatile link
Rad-hard receiver and transmitter for multi-mode and single-mode fibers

GBTX
- Rad-hard optical link interface chip
- Flexible frontend topology through configurable serial “E-links”
- GBT mode (data links or control links)
 - RS FEC, 3.36 Gb/s
- WideBus mode (data links only)
 - No FEC, 4.48 Gb/s

VELO frontend
- GWT (Vertex Locator data links only)
 - Velopix, 5.12 Gb/s

VTRx (duplex) + 2 VTTx (simplex) on a frontend board
MiniDAQ1 hardware

AMC40 mezzanine + AMCTP carrier

- **AMC40**
 - Stratix5 FPGA
 - 3 MiniPOD AFBR-811VxyZ (Tx)
 - 3 MiniPOD AFBR-821VxyZ (Rx)
 - Up to 24 GBT/WB/GWT
 - Up to 12 10GBASE-R Ethernet

- **AMCTP**
 - Local 40/80 MHz oscillator
 - External clock input
 - COM Express Module
 - PCI Express x1 to FPGA
 - GbE to LAN
MiniDAQ1 firmware

- **SOL40/SODIN**
 - Highly configurable for each FE topology
 - Bidirectional commands and monitoring

- **TELL40**
 - Highly configurable for each FE protocol
 - Synchronize with frontend BXID
 - Align data between links
 - Assign global EVID
 - Aggregate BXID data as “fragments”
 - Front-end specific data processing (optional)

- **ECS**
 - Control system access from AMCTP

24 GBT + SODIN + SOL40 + TELL40 + ETH ≈ 85% FPGA logic
Slow control

GBT-SCA

- Rad-hard ASIC for slow control functions over GBT

MiniDAQ1

- SCA protocols implemented
 - ADC
 - I2C
 - GPIO
 - SPI
 - JTAG

- Remote programming flash-based FPGAs through GBT-SCA
 - Xilinx Kintex7
 - Microsemi SmartFusion2 and IGLOO2
Fast commands

SODIN
- Regulate throughput from readout boards
- Distribute timing and synchronous commands
 - Front-end reset
 - Synchronization
 - Header only
 - Non-Zero Suppressed
 - Calibration
 - Random/orbit trigger
 - ...and more

SOL40
- Fan-out fast commands to TELL40 and to FE
- Distribute ECS configuration to FE
- Receive ECS monitoring from FE

In MiniDAQ1, SODIN+SOL40+TELL40 coexist in one same board
Control system

WinCC-OA
- Device description (Run-time DB)
- Device access (DIM, OPC, drivers...)
- Alarm handling
- Archiving, logging, scripting, trending
- Access control
- User interface

SMI++
- Abstract behavior modeling (FSM)
- Automation and recovery

GbtServ
- Interface between SCADA and FPGA

Writer
- Interface between SCADA and storage
10GBASE-R readout

- Multiple UDP streams
 - Raw data, TELL40 data, SODIN data
- Reformat stream to a more efficient format for transmission
- Simple round-robin scheduling between available network links
 - Keep TELL40 and SODIN data for a same event on the same link
- Bidirectional protocol stack
 - UDP, ARP, ICMP
- Links are always point-to-point
 - Optional event building done in PC
- ChelsioT420-CR
 - WireDirect driver for line-rate throughput
Readout software

DIM integration with control system
- Publish status updates
- Receive commands and configuration

Output to disk
- Retain event fragments for offline analysis

Output to monitoring
- Best-effort sampling for online data quality

Event builder
- Prototype implementation to merge fragment streams from multiple sources
Scaling out

It is possible to scale the readout system by chaining multiple MiniDAQ1s

Control system
- Just instantiate multiple FSM trees

Master board
- Local oscillator provides common reference
- Local SODIN provides central synchronization
- Local front-end generator provides data

Slave board(s)
- Recover clock from master link
- Use recovered clock for TELL40 links

Readout
- Store one separate file per source
- Compare EVID and BXID sequence
Some test setups

- Sub-detector groups are actively using MiniDAQ1 to develop the new frontends
- MiniDAQ1 continues to be maintained and will also be used to stress-test MiniDAQ2
MiniDAQ2 hardware (PCle40)

- PCI express add-in card
 - Full-length, full-height

- Arria10 FPGA
 - 2x resources as Stratix5
 - 24 links: 85% on S5 to 46% on A10

- High-density optical IO
 - Up to 48 bidirectional links

- PCle Gen3.0 interface to Event Builder
 - Custom 100 Gb/s DMA engine

- Design has been validated
 - Full board self-test

- Initial production started

- Collaboration institutes have started to receive first devices
Transition to MiniDAQ2

Aim to make the change transparent:

Hardware
- Everything changed (FPGA, Clock tree...)

Firmware
- New Low-Level Interface
- Fronted side stays the same
- Backend side replaced by PCIe

Software
- GbtServ unchanged
- Control system & panels compatible
- Stream and buffer API adapted to DMA
- Writer output format unchanged
- Interface to monitoring and presenter unchanged
Final architecture

Custom electronics

Common board for all TFC/ECS/DAQ

COTS hardware

Detector front-end electronics

Event Builders (PC + readout board)

UX85B

Clock & fast commands

throttle from PCIe40s

Event Builder network

6 x 100 Gbit/s

online storage

Event Filter Farm
1000 – 4000 nodes

subfarm switch

subfarm switch

x500

6 x 100 Gbit/s
Acknowledgments

- **CPPM**
 Jean-Pierre Cachemiche, Frédéric Hachon, Pierre-Yves Duval, Frédéric Rethore

- **LAPP**
 Guillaume Vouters

- **CERN**
 Federico Alessio, Paolo Durante, Joao Viana Barbosa, Luis Granado Cardoso, Niko Neufeld and EP-ESE group