MiniDAQ1

A COMPACT DATA ACQUISITION SYSTEM FOR GBT READOUT OVER 10G ETHERNET

Overview

- LHCb upgrade
- Optical frontend readout
- Slow control implementation
- Fast control implementation
- DAQ & Ethernet implementation
- Transition to MiniDAQ2 and final architecture

The LHCb experiment

One of the 4 major experiments at the Large Hadron Collider under the French-Swiss border. LHCb Geneva ATLAS ALICE CMS Single arm forward spectrometer for accurate measure of B meson decays. A collaboration between 69 universities and laboratories from 16 countries. LHC In operation since 2009.

LHCb Run 3 upgrade

- Remove L0 hardware trigger
 - LO saturation at high luminosity
- Send full event rate to HLT
 - 1 MHz \rightarrow 40 MHz
- Higher event size
 - 50 KB → 100 KB
- Zero suppression on frontends
- New readout electronics
- Frontend readout over new protocols

Optical frontend readout

Versatile link

Rad-hard receiver and transmitter for multi-mode and single-mode fibers

GBTX

- Rad-hard optical link interface chip
- Flexible frontend topology through configurable serial "E-links"
- GBT mode (data links or control links)
 - RS FEC, 3.36 Gb/s
- WideBus mode (data links only)
 - No FEC, 4.48 Gb/s

VELO frontend

- GWT (<u>Ve</u>rtex <u>Lo</u>cator data links only)
 - Velopix, 5.12 Gb/s

VTRx (duplex) + 2 VTTx (simplex) on a frontend board

MiniDAQ1 hardware

AMC40 mezzanine + AMCTP carrier

AMC40

- Stratix5 FPGA
- 3 MiniPOD AFBR-811VxyZ (Tx)
- 3 MiniPOD AFBR-821VxyZ (Rx)
- Up to 24 GBT/WB/GWT
- Up to 12 10GBASE-R Ethernet

AMCTP

- Local 40/80 MHz oscillator
- External clock input
- COM Express Module
- PCI Express x1 to FPGA
- GbE to LAN

MiniDAQ1 firmware

SOL40/SODIN

- Highly configurable for each FE topology
- Bidirectional commands and monitoring

TELL40

- Highly configurable for each FE protocol
- Synchronize with frontend BXID
- Align data between links
- Assign global EVID
- Aggregate BXID data as "fragments"
- Front-end specific data processing (optional)

ECS

Control system access from AMCTP

24 GBT + SODIN + SOL40 + TELL40 + ETH \approx 85% FPGA logic

FE Rx/Tx		FE Rx
SOL40	E C S	TELL40
SODIN		10G READOUT
Control path		DAQ path

Slow control

GBT-SCA

 Rad-hard ASIC for slow control functions over GBT

MiniDAQ1

- SCA protocols implemented
 - ADC
 - I2C
 - GPIO
 - SPI
 - JTAG
- Remote programming flash-based FPGAs through GBT-SCA
 - XilinX Kintex7
 - Microsemi SmartFusion2 and IGLOO2

Fast commands

SODIN

- Regulate throughput from readout boards
- Distribute timing and synchronous commands
 - Front-end reset
 - Synchronization
 - Header only
 - Non-Zero Suppressed
 - Calibration
 - Random/orbit trigger
 - …and more

SOL40

- Fan-out fast commands to TELL40 and to FE
- Distribute ECS configuration to FE
- Receive ECS monitoring from FE

In MiniDAQ1, SODIN+SOL40+TELL40 coexist in one same board

Control system

WinCC-OA

- Device description (Run-time DB)
- Device access (DIM, OPC, drivers...)
- Alarm handling
- Archiving, logging, scripting, trending
- Access control
- User interface

SMI++

- Abstract behavior modeling (FSM)
- Automation and recovery

GbtServ

Interface between SCADA and FPGA

Writer

Interface between SCADA and storage

22/05/2017

10GBASE-R readout

- Multiple UDP streams
 - Raw data, TELL40 data, SODIN data
- Reformat stream to a more efficient format for transmission
- Simple round-robing scheduling between available network links
 - Keep TELL40 and SODIN data for a same event on the same link
- Bidirectional protocol stack
 - UDP, ARP, ICMP
- Links are always point-to-point
 - Optional event building done in PC
- ChelsioT420-CR
 - WireDirect driver for line-rate throughput

Readout software

DIM integration with control system

- Publish status updates
- Receive commands and configuration

Output to disk

 Retain event fragments for offline analysis

Output to monitoring

 Best-effort sampling for online data quality

Event builder

 Prototype implementation to merge fragment streams from multiple sources

Scaling out

It is possible to scale the readout system by chaining multiple MiniDAQ1s

Control system

Just instantiate multiple FSM trees

Master board

- Local oscillator provides common reference
- Local SODIN provides central synchronization
- Local front-end generator provides data
 Slave board(s)
- Recover clock from master link
- Use recovered clock for TELL40 links

Readout

- Store one seperate file per source
- Compare EVID and BXID sequence

Some test setups

- Sub-detector groups are actively using MiniDAQ1 to develop the new frontends
- MiniDAQ1 continues to be maintained and will also be used to stress-test MiniDAQ2

MiniDAQ2 hardware (PCle40)

- PCI express add-in card
 - Full-length, full-height
- Arria10 FPGA
 - 2x resources as Stratix5
 - 24 links: 85% on S5 to 46% on A10
- High-density optical IO
 - Up to 48 bidirectional links
- PCIe Gen3.0 interface to Event Builder
 - Custom 100 Gb/s DMA engine
- Design has been validated
 - Full board self-test
- Initial production started
- Collaboration institutes have started to receive first devices

Transition to MiniDAQ2

Aim to make the change transparent:

Hardware

Everything changed (FPGA, Clock tree...)

Firmware

- New Low-Level Interface
- Fronted side stays the same
- Backend side replaced by PCIe

Software

- GbtServ unchanged
- Control system & panels compatible
- Stream and buffer API adapted to DMA
- Writer output format unchanged
- Interface to monitoring and presenter unchanged

Acknowledgments

CPPM

Jean-Pierre Cachemiche, Fréderic Hachon, Pierre-Yves Duval, Fréderic Rethore

LAPP

Guillaume Vouters

CERN

Federico Alessio, Paolo Durante, Joao Viana Barbosa, Luis Granado Cardoso, Niko Neufeld and EP-ESE group

Laboratoire d'Annecy-le-Vieux de Physique des Particules

