The Semi-Digital Hadronic Calorimeter for Future Leptonic Collider experiments

I. Laktineh

On behalf of the the CALICE Collaboration
Outline

SDHCAL technological prototype
- Description
- Test Beam results
- Hadronic shower studies

R&D for large SDHCAL modules
- Detectors
- Electronics
- DAQ
- New challenges

Conclusion
The SDHCAL-GRPC is one of the two HCAL options based on PFA and Proposed for **ILD of ILC**. Modules are made of 48 RPC chambers (6λI) equipped with **semi-digital, power-pulsed electronics** readout and placed in **self-supporting mechanical** structure to serve as absorber as well.

The structure proposed for the SDHCAL-ILD:
- **very compact** with negligible dead zones
- Eliminates projective cracks
- Minimizes barrel / endcap separation (**services leaving from the outer radius**)

SDHCAL Technological Prototype should be as much as possible similar to the ILD module and able to study **hadronic showers**

Challenges

- Homogeneity for large surfaces
- Thickness of only few mms
- Lateral segmentation of 1 cm X 1 cm
- Services from one side
- Embedded power-cycled electronics
- Self-supporting mechanical structure
SDHCAL-ILD

The SDHCAL-GRPC is one of the two HCAL options based on PFA and Proposed for **ILD of ILC**. Modules are made of 48 RPC chambers ($6\lambda_1$) equipped with *semi-digital, power-pulsed electronics* readout and placed in *self-supporting mechanical* structure to serve as absorber as well.

The structure proposed for the SDHCAL-ILD:
- very **compact** with negligible dead zones
- Eliminates projective cracks
- Minimizes barrel / endcap separation
 (services leaving from the outer radius)

SDHCAL Technological Prototype should be as much as possible similar to the ILD module and able to study **hadronic showers**

Challenges

- Homogeneity for large surfaces
- Thickness of only few mms
- Lateral segmentation of 1 cm X 1 cm
- Services from one side
- Embedded power-cycled electronics
- Self-supporting mechanical structure

I.Laktineh, TIPP2017, Beijing, China

20/05/17
SDHCAL prototype construction

- 10500 64-ch ASIC were tested and calibrated using a dedicated (ASICs layout: 93%).

- 310 PCBs were produced, cabled and tested. They were assembled by sets of six to make 1m² ASUs.

- 170 DIF, 20 DCC were built and tested.

- 50 detectors were built and assembled with their electronics into cassettes.

- Self-supporting mechanical structure.

- DAQ system using both USB and HTML protocol was developed and used.

- Full assembly took place at CERN.
6

10500 64-ch ASICs were tested and calibrated using a dedicated ASICs layout: 93%.

SDHCAL prototype construction
310 PCBs were produced, cabled and tested. They were assembled by sets of six to make 1m2 ASUs.
50 detectors were built and assembled with their electronics into cassettes.
Self-supporting mechanical structure.
Full assembly took place at CERN.

170 DIF, 20 DCC were built and tested.
DAQ system using both USB and HTML protocol was developed and used.

Published: JINST 10 (2015) P10039
SDHCAL performance

- The SDHCAL prototype was exposed to hadron, muon and electron beams in 2012, 2015 and 2016 on PS, H6 and H6 and these days H8-SPS lines.

- **Power-pulsing** using the SPS spill structure was used to reduce the power consumption.

- **Self-triggering** mode is used but external trigger mode is possible

- The threshold information helps to improve on the energy rec. by better accounting for the number of tracks crossing one pad

- New data were taken in 2015 with an improved DAQ system
Event selection

<table>
<thead>
<tr>
<th>Event type</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron rejection</td>
<td>Shower start ≥ 5 or $N_{\text{layer}} \geq 30$</td>
</tr>
<tr>
<td>Muon rejection</td>
<td>$\frac{N_{\text{hit}}}{N_{\text{layer}}} > 2.2$</td>
</tr>
<tr>
<td>Radiative muon rejection</td>
<td>$\frac{N_{\text{layer}} \text{ RMS}>5\text{cm}}{N_{\text{layer}}} > 20%$</td>
</tr>
<tr>
<td>Neutral rejection</td>
<td>$N_{\text{hit} \in \text{First 5 layers}} \geq 4$</td>
</tr>
</tbody>
</table>

- No containment selection.
- No Cerenkov detector
Energy estimation

The thresholds weight evolution with the total number of hits obtained by minimizing a χ^2

$$\chi^2 = \frac{(E_{\text{beam}} - E_{\text{rec}})^2}{E_{\text{beam}}}$$

$$E_{\text{rec}} = \alpha (N_{\text{tot}}) N_1 + \beta (N_{\text{tot}}) N_2 + \gamma (N_{\text{tot}}) N_3$$

N_1, N_2 and N_3: exclusive number of hits associated to first, second and third threshold.

α, β, γ are quadratic functions of the total number of hits (N_{tot})

Events of H2 runs corresponding to energies: 5, 10, 30, 60 and 80 GeV were used to fit the 9 parameters.

Then the energy of hadronic events in both H2 (only pions) and H6 (presence of protons)
Energy estimation

Comparison semi-digital versus binary readout

\[
E_{\text{rec}} (\text{binary}) = C \, N_{\text{tot}} + D \, N_{\text{tot}}^2 + F \, N_{\text{tot}}^3
\]

\[
E_{\text{rec}} (\text{semi-digital}) = \alpha (N_{\text{tot}}) \, N_1 + \beta (N_{\text{tot}}) \, N_2 + \gamma (N_{\text{tot}}) \, N_3
\]

Substantial improvement a energy > 30 GeV

Published: JINST 11 (2016) P04001
A **digitizer** to describe the RPC response was developed. Parameters tuned using muons and electrons. Detector inefficiencies (dead channels) are included.
Comparison data/simulation

Published: JINST 11 (2016) P06014

I.Laktineh, TIPP2017, Beijing, China
SDHCAL High-granularity impact
Hough Transform is an example to extract tracks within hadronic showers and to use them to control the calorimeter in situ

\[\rho_{xz} = z \sin(\theta) + x \cos(\theta) \]

Excellent agreement with results obtained with cosmic and beam-muons.
Excellent agreement data/MC

20/05/17
I.Laktineh, TIPP2017, Beijing, China
SDHCAL High-granularity impact

Good tool to discriminate electron/hadron

It improves on the energy reconstruction by dealing with the hits belonging to the track segments independently of their threshold.

The technique could be extended to hadronic showers in the presence of magnetic field.
SDHCAL high granularity is good

It helps to optimize the connection of hits belonging to the same shower by using first the topology and then the energy information.

ArborPFA algorithm: It connect first hits and then their clusters using distance and orientation information. Then correct using tracker information.

Algorithm idea was first developed by ALEPH collaboration
SDHCAL for future experiments

- Detectors as large as 3m X 1m need to be built
- Electronic readout should be the most robust with minimal intervention during operation.
- DAQ system should be robust and efficient
- Mechanical structure to be similar to the final one
- Envisage new features such timing, etc..

Goal: to build new prototype with few but large GRPC with the new components
Detector conception

Construction and operation of large GRPC necessitate some improvements with respect to the present scenario.

Gas distribution: new scheme is proposed

![Prototype circulation system](image1)

![New circulation system](image2)

Cassette conception to ensure good contact between the detector and electronics is to be improved

20/05/17

I.Laktineh, TIPP2017, Beijing, China
New electronics

Electronics readout for the 1m³ prototipo

USB
HDMI

100 cm

3072 ch
ASU1
ASU2

HADROC chip (ASIC)

144 ASICs = 9216 channels/1m²

1m² board ➔ 6 ASUs hosting 24 ASICs

DIF #1
DIF #2
DIF #3

1 DIF (detector InterFace) for 2 ASU (Active Sensor Unit.- PCB+ASICs) ➔ 3 DIFs for ONE 1m² GRPC detector

Electronics readout for the final detector

36 columns of HR3

9 x 2 ASU cards

12 rows of HR3

HR3 chips (24 on each ASU)

DIF
dimensions

~ 50 cm

~ 5 cm

~ 2.5 cm

Only 1 DIF per GRPC (any size) with small dimensions to fit in the small space available at the ILD detector

ASUs of 1000 mmx333 mm are being produced

20/05/17

New electronics
HARDROCR3 main features:

- Independent channels
- Zero suppress
- Extended dynamic range (up to 50 pC)
- I2C link with triple voting for slow control parameters
- Packaging in QFP208, die size ~30 mm²
- Consumption increase (internal PLL, I2C)

H3B TESTED: 786, Yield: 83.3 %
HARDROC3: Analog linearity

Fast shaper outputs (mV) vs Qinj (fC)

FSB0: 5σ noise limit = 15 fC
FSB1: 5σ noise limit = 15 fC
FSB2: 5σ noise limit = 15 fC

Dynamic range: 15 fC - 50 pC

20/05/17
DIF sends DAQ commands (config, clock, trigger) to front-end and transfer their signal data to DAQ. It controls also the ASIC power pulsing.

- Only one DIF per plane (instead of three)
- DIF handle up to 432 HR3 chips (vs 48 HR2 in previous DIF)
- HR3 slow control through I2C bus (12 I2C buses).
- Keeps also 2 of the old slow control buses as backup & redundancy.
- Data transmission to/from DAQ by Ethernet
- Clock and synchronization by TTC (already used in LHC)
- 93W Peak power supply with super-capacitors (vs 8.6 W in previous DIF)
- Spare I/O connectors to the FPGA (i.e. for GBT links)
- Upgrade USB 1.1 to USB 2.0
Improvement on the present system is being made by using **Electron Beam Welding** rather than bolts to reduce the deformation and the spacers thickness.

Industrial production of **flat** large absorber plates (3 m X 1 m) by **roller leveling** process.
Mechanical Structure

Promising results but better performance is still needed

Very good flatness (< 1mm)
Implementation of a GBT-based communication system for ROC chips. This aims to reach higher performance using robust and well maintained system in the future.

Global system architecture

Front-End control and data collection

Clocking and main FSM

For now, KC705

HR2, HR3, Petiroc..

DAQ system
Next step: Timing

Timing could be an important factor to separate showers and better reconstruct their energy.

Multi-gap RPC are excellent fast timing detectors. Several were designed and built. Excellent efficiency when tested with HARDROC ASICs. Next step use PETIROC (< 20 ps time jitters).

Threshold sets at 114 fC.
Next step: cooling

Cooling becomes necessary if the power pulsing scheme is not possible (CEPC project).

Rectangular section tubes: 2x1 mm

Copper plate over: 1.5 mm

PCB plate under: 1.4 mm

Flow in

Flow out

symmetry

Water cooling: $h = 10000 \text{ W/m}^2/\text{k}$

Thermal load: 80 mW/chip without power pulsing

Simulation ¼ structure pcb + chips

20/05/17

I.Laktineh, TIPP2017, Beijing, China
Conclusions and perspectives

→ SDHCAL is the first technological prototype to be conceived and built for future leptonic experiments.

→ Results of beam tests validate the concept

→ New prototype is on the rails and in principle could be achieved before the end of 2017.

→ New features such as timing and cooling will play important role in future R&D for future colliders.
CHEF 2017

Calorimetry for the High Energy Frontier

CALORIMETERS : Today and for future projects

2 - 6 October 2017, Lyon

Local OC
J. Fay
G. Grenier
B. Illé
I. Lakhtineh
L. Mirabito

Program Committee
I. Lakhtineh (chairman)
J-C. Briant (co-chairman)
T. Camporesi
A. Gouffin
J. Brau
K. Kawai
M. Asai
L. Serin
F. Simon
Ch. de la Taille
H. Yang

Topics:
New Concepts in calorimeters
Calorimeters technology
Timing
Simulation
Electronics
Mechanics and services

Contact:
CHEF2017@univ-lyon1.fr
Tests of small mechanical structures prototypes

Before assembly the big prototype (~3x1m²), welding tests with smaller prototypes are foreseen.

Prototype after welding

First small prototype: 4 plates 1x1 m²

After comparing the measurements before and after welding deformations found (~1mm) bigger than expected in X-axis. O.K in Y-axis.

⇒ Probably due to the welding sequence used.

Differences with respect to the initial status of the plate in Z.
Differences with respect to the initial status of the distance between plates.

Measurements have been done AFTER REMOVING the PIECES used FOR RIGIDITY (the picture includes them).

I.Laktineh, TIPP2017, Beijing, China

25/05/17
Second small prototype: 4 plates 1x0.5 m²

Welding performed **changing a bit the welding sequence** with respect to the first prototype.

Deformations measure using photogrammetry
Gas purifier

- Goal: reduce the gas consumption to reduce the cost.
- Gas renewal of 5-10% rather than 100%
- Conceived by the CERN gas group
DQM4HEP: Data Quality Monitoring for High Energy Physics

This is a generic C++ framework to perform online data analysis and data quality report. It deals with online application workflow, inter-process communication and memory management.

Main features:
- Event distributed system (client / server architecture)
- Set of user interfaces designed for data quality analysis
- Monitor element distributed system
- Graphical user interface for data visualisation (Qt Gui)
- Large scale remote process management
- Generic IO support for different experiments
- Designed for simple prototype monitoring up to complex systems like ILD or LHC detectors
- Logbook interface (ELog)
Example: Hit map control