The SHiP experiment at CERN

A. Murat GÜLER
METU Ankara
On behalf of the SHiP Collaboration
Physics Motivation

- Standard Model provided consistent description of Nature’s constituents and their interactions.
 - No significant deviation from SM.
- But the Standard Model can not explain
 - Neutrino masses and oscillations
 - Dark matter
 - Baryon asymmetry

CMB: $\frac{n_b}{\gamma} = (6.3 \pm 0.3) \times 10^{-10}$
$\text{CPV (SM)} \sim 10^{-20}$

Universe content
- Visible matter 5%
- Dark matter 27%
- Dark energy 68%
Physics Motivation

- If the *hidden* particles have very feeble interaction with standard model particles. The only way to observe these interactions is to go high intensity.
- The SHiP is proposed to explore the domain of hidden particles in intensity frontier.
Physics Goals

- Hidden particles are coupled to the Standard Model sector via renormalizable “portals”.

\[L = L_{SM} + L_{\text{mediator}} + L_{\text{HS}} \]

- Large number of models investigated.
- Tau Neutrino Physics.

- HP production and decay rates are strongly suppressed relative to SM
 - Production branching ratios $O(10^{-10})$
 - Long-lived objects
Physics Goals

- Production through hadron decays (π, K, D, B, proton bremsstrahlung, …)

<table>
<thead>
<tr>
<th>Models tested</th>
<th>Final states</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrino portal, SUSY neutralino</td>
<td>lπ, lK, lp (l=e,μ,ν) (ρ⁺→π⁺π⁰)</td>
</tr>
<tr>
<td>Vector, scalar, axion portals, SUSY sgoldstino</td>
<td>e⁺e⁻, μ⁺μ⁻</td>
</tr>
<tr>
<td>Vector, scalar, axion portals, SUSY sgoldstino</td>
<td>π⁺π⁻, K⁺K⁻</td>
</tr>
<tr>
<td>Neutrino portal, SUSY neutralino, axino</td>
<td>l⁺ l⁻ ν</td>
</tr>
<tr>
<td>Axion portal, SUSY sgoldstino</td>
<td>γγ</td>
</tr>
<tr>
<td>SUSY sgoldstino</td>
<td>π⁰ π⁰</td>
</tr>
</tbody>
</table>

- Full reconstruction and PID are essential to minimize model dependence
- Experimental challenge is background suppression
 - It requires O(0.01)
The neutrino Minimal Standard Model (νMSM) aims to explain.

- Matter anti-matter asymmetry in the Universe, neutrino masses and oscillations, non-baryonic dark matter.
- Adds three right-handed, Majorana, Heavy Neutral Leptons (HNL), N1, N2 and N3.

- N1 is a dark matter candidate (m≈ O(1) keV).
- N2, N3 give masses to neutrinos and produce baryon asymmetry of the Universe m≈ O(100 MeV-GeV)
HNL Sensitivity

- Production in charm and beauty meson decays
- Decay into hl and $ll\nu$
- νMSM parameter space almost totally explored for $m_N \leq 2$ GeV

- SHiP sensitivity covers large area of parameter space below the B mass & moving down towards the ultimate see-saw limit
 Scalar Portal : Hidden scalar can mix with the SM Higgs. Mostly produced in penguin-type decays of B and K decays
- Decay into a pair of SM particles: $S \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, KK, \eta\eta, \tau\tau, DD$

 Vector portal : dark photon (A') produced in QCD processes or in decays of $\pi^0 \rightarrow \gamma'\gamma$, $\eta \rightarrow \gamma'\gamma$, $\omega \rightarrow \gamma\pi^0$ and $\eta' \rightarrow \gamma'\gamma$
- Decay into SM particles through a virtual photon: $\gamma' \rightarrow e^+e^-, \mu^+\mu^-, q\bar{q}$
A facility to search for hidden particles (SHiP) at the SPS: the physics case

Contents

1 Introduction

2 Vector portal
 2.1 Classification of vector portals
 2.1.1 Kinetic mixing
 2.1.2 Anomaly-free gauge groups ($B - L, L_u - L_\tau$ etc)

3 Scalar portal
 3.1 The scalar sector of the Standard Model and Beyond
 3.1.1 Scalar portal effective Lagrangian
 3.1.2 Hidden valleys
 3.1.3 Light scalars in supersymmetry
 3.2 Linear scalar portals: Higgs-scalar mixing

4 Neutrino portal
 4.1 Heavy neutral leptons
 4.2 Active neutrino phenomenology
 4.2.1 Three-flavour neutrino oscillations: A theoretical overview
 4.2.2 Present experimental status of neutrino masses and mixings
 4.2.3 Short-Baseline neutrino anomalies
 4.2.4 Future neutrino experiments

5 ALPs (and other PNGBs) at SHiP
 5.1 ALPs and why they are interesting
 5.1.1 ALP origins
 5.1.2 Connection to Dark Matter
 5.2 Interactions, phenomenological features and existing limits
 5.3 ALPs coupled to two gauge bosons

6 SUSY
 6.1 Introduction
 6.2 A Very Light Supersymmetric Neutralino and R-Parity Violation
 6.2.1 Motivation for a very light neutralino
 6.2.2 R-parity Violation
 6.2.3 Finding Neutralinos at SHiP via R-Parity violation

7 Tau neutrino physics
 7.1 Physics case
 7.1.1 Tau neutrino physics
 7.1.2 Deep inelastic muon and electron neutrino scatteri
 7.1.3 Electron neutrino cross section at high energy
 7.1.4 Tau neutrino magnetic moment

8 Searches of lepton flavour violating processes $\tau \to 3\mu$
 8.1 Motivation as a null-test of the standard model
 8.2 $\tau \to 3\mu$ in seesaw scenarios
 8.3 Supersymmetric models

85 theorists
arXiv: 1504.0855
The SHiP facility is located on the North Area, and shares the TT20 transfer line and slow extraction mode.

- 400 GeV protons from SPS
- 4×10^{19} pot/year (~200 days of running)
- Spill = 4×10^{13} pot per cycle of 7.2 s with slow beam extraction (1s)

Proposed implementation is based on minimal modification to the SPS complex.
Experimental Requirements

- **Initial reduction of beam induced backgrounds**
 - Heavy target to maximize Heavy Flavour production (large A) and minimize production of neutrinos in $\pi/K \rightarrow \mu\nu$ decays (short λ_{int})
 - Hadron absorber
 - Effective muon shield (without shield: muon rate $\sim 10^{10}$ per spill of 4×10^{13} pot)
 - Slow (and uniform) beam extraction ~ 1 s to reduce occupancy in the detector
The SHiP Detector

- $N_{\text{pot}} = 2 \times 10^{20}$ in 5 years of data taking
 - $> 10^{17} D$
 - $> 10^{15} \tau$
 - Zero background

- All heavy infrastructure is at distance to reduce neutrino/muon interactions.

- Long decay volume protected by various Veto Taggers,

$\sim 150 \text{m}$
Active Muon Shield

- Active muon shield based entirely on magnet sweeper with a total field integral $B_y = 86.4 \text{ Tm}$
- Realistic design of sweeper magnets in progress
- $< 7k$ muons / spill ($E_\mu > 3 \text{ GeV}$), from 10^{10}
- Negligible flux in terms of detector occupancy
Background rejection:
• μ or ν interactions in decay volume: evacuated vacuum vessel: (10 µbar)
• K/Λ-decays produced in surrounding material in μ, ν-interaction:
 – Taggers: liquid scintillator in double walled vessel to veto candidates with accompanying particles.
 – Veto: veto short lived K_S, Λ, or candidate with accompanying particles.

Spectrometer to reconstruct signal:
• Ecal and muon filter/chambers at the end.
• Tracking straw chambers and magnet for reconstruction.
Particle Identification

ECAL: e/γ, π^0 and η reconstruction (Shashlik technique)

HCAL: π/μ separation
Emulsion Target

- **Dimensions:** 0.8 x 2 x 1.6 m³
- **Number of ECC bricks:** ~900
- **Modular structure made of a sandwich of passive material plates interleaved with emulsion films.**
- **Total mass:** ~7 tons
The Neutrino Target

Target Trackers
- Provide time stamp
- Link track information in emulsion to signal in TT.

Dipolar Magnet & Compact Emulsion Spectrometer
- To measure the charge of the decay products.
- ν_τ/anti-ν_τ separation, charge measurement.

ECC
- Primary and secondary vertex reconstruction with μm resolution
- Momentum measurement by multiple Coulomb Scattering
- Electron/pion identification.

Muon Spectrometer
- Perform the muon identification and measure its charge and momentum.

~230 events/brick
SHiP Neutrino Program

- SHiP setup ideally suited to study neutrino and anti-neutrino physics for all three active flavours.
- High charmed hadrons production rates ⇒ high neutrino fluxes from their decays, including remnant pion and kaon decays.

- Energy spectrum of different neutrino flavors at target
- Anti-ν_τ is not detected!

5/25/17

A. Murat GÜLER@METU
ν_τ/anti-ν_τ yield

- Number of ν_τ and anti-ν_τ produced in the beam dump.

\[
N_{ν_τ+ν̅_τ} = 4N_p \frac{σ_{c\bar{c}}}{σ_{pN}} f_{D_s} Br(D_s → τ) = 3.26 \times 10^{-5} N_p = 6.5 \times 10^{15}
\]

- Main background in ν_τ and anti-ν_τ searches is the charm production in ν_μCC (anti-ν_μCC) and ν_eCC (anti-ν_eCC) interactions, when the primary lepton is not identified.

<table>
<thead>
<tr>
<th>decay channel</th>
<th>ν_τ</th>
<th>anti-ν_τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ → μ</td>
<td>570</td>
<td>30</td>
</tr>
<tr>
<td>τ → h</td>
<td>990</td>
<td>80</td>
</tr>
<tr>
<td>τ → 3h</td>
<td>210</td>
<td>30</td>
</tr>
<tr>
<td>total</td>
<td>1770</td>
<td>140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N_e^{exp}</th>
<th>N_b^{bg}</th>
<th>R</th>
<th>N_e^{exp}</th>
<th>N_b^{bg}</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ → μ</td>
<td>570</td>
<td>30</td>
<td>19</td>
<td>290</td>
<td>140</td>
<td>2</td>
</tr>
<tr>
<td>τ → h</td>
<td>990</td>
<td>80</td>
<td>12</td>
<td>500</td>
<td>380</td>
<td>1.3</td>
</tr>
<tr>
<td>τ → 3h</td>
<td>210</td>
<td>30</td>
<td>7</td>
<td>110</td>
<td>140</td>
<td>0.8</td>
</tr>
<tr>
<td>total</td>
<td>1770</td>
<td>140</td>
<td>13</td>
<td>900</td>
<td>660</td>
<td>1.4</td>
</tr>
</tbody>
</table>

R = S/B Ratio
F₄ and F₅ Structure Functions

- Through νₜ and anti-νₜ identification: unique capability of being sensitive to F₄ and F₅

\[
\frac{d^2\sigma^{\nu(\bar{\nu})}}{dx dy} = \frac{G_F^2 M E_\nu}{\pi(1 + Q^2/M_W^2)^2} \left((y^2 x + \frac{m_\tau^2 y}{2E_\nu M}) F_1 + \left(1 - \frac{m_\tau^2}{4E_\nu^2} \right) - \left(1 + \frac{M x}{2E_\nu} \right) \right) F_2
\]

\[\pm \left[xy(1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_\nu M} \right] F_3 + \frac{m_\tau^2(m_\tau^2 + Q^2)}{4E_\nu^2 M^2 x} \left(F_4 - \frac{m_\tau^2}{E_\nu M} F_5 \right),\]

- SM prediction:
 \[F_4 = F_5 = 0\]

- At LO F₄ = 0, 2xF₅=F₂
- At NLO F₄ ~ 1% at 10 GeV

- E(\bar{\nu}_t) < 38 GeV
 r>1.6 evidence for non-zero values of F₄ and F₅
Expected charm exceeds the statistics available in previous experiments by more than one order of magnitude.

In NuTeV: \(\sim 5100 \nu_\mu, \sim 1460 \text{anti-} \nu_\mu \)

In CHORUS: \(\sim 2000 \nu_\mu, 32 \text{anti-} \nu_\mu \)

- **No charm candidate from \(\nu_e \) and \(\nu_\tau \) interactions ever reported!**
Project Schedule

Form SHiP Collaboration December 2014
- Technical Proposal April 2015
- Positive SPSC recommendation for CDS September 2016
- **Comprehensive Design Study 2018**
- **Construction and Installation 2021-2025**
- Commissioning and data taking 2026

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LS2</td>
<td></td>
<td></td>
<td>LS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS</td>
<td></td>
</tr>
<tr>
<td>Detector</td>
<td></td>
</tr>
<tr>
<td>R&D, design and prototyping</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td></td>
</tr>
<tr>
<td>Milestones</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td></td>
</tr>
<tr>
<td>TDR</td>
<td></td>
</tr>
<tr>
<td>PRR</td>
<td></td>
</tr>
<tr>
<td>Facility</td>
<td></td>
</tr>
<tr>
<td>Integration</td>
<td></td>
</tr>
<tr>
<td>CwB</td>
<td></td>
</tr>
<tr>
<td>Civil engineering</td>
<td></td>
</tr>
<tr>
<td>Pre-construction</td>
<td></td>
</tr>
<tr>
<td>Target – Detector hall – Beamline – Junction (WP1)</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td>R&D, design and CDR</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td></td>
</tr>
<tr>
<td>Beam Line</td>
<td></td>
</tr>
<tr>
<td>R&D, design and CDR</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td></td>
</tr>
<tr>
<td>Target complex</td>
<td></td>
</tr>
<tr>
<td>R&D, design and CDR</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
</tr>
<tr>
<td>R&D, design and CDR + prototyping</td>
<td></td>
</tr>
</tbody>
</table>
SHiP: Search for Hidden Particles

- SHiP is a new proposed fixed-target experiment at the CERN SPS accelerator to search for hidden, very weakly interacting new particles.
- At the same time, also ideal for ν_τ physics.

Collaboration
- 49 institutes from 16 Countries, plus CERN
SHiP is a fixed target experiment proposal at CERN SPS.
SHiP is proposed to search for New Physics in the largely unexplored domain of new, very weakly interacting particles with mass $O(10)\text{ GeV}$.
SHiP will perform a complement searches for new searches at energy frontier at CERN.
SHiP is also unique detector for neutrino/charm physics.
Positive recommendation from the SPSC in January 2016.
Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (MCHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility</td>
<td>135.8</td>
</tr>
<tr>
<td>Civil engineering</td>
<td>57.4</td>
</tr>
<tr>
<td>Infrastructure and services</td>
<td>22.0</td>
</tr>
<tr>
<td>Extraction and beamline</td>
<td>21.0</td>
</tr>
<tr>
<td>Target and target complex</td>
<td>24.0</td>
</tr>
<tr>
<td>Muon shield</td>
<td>11.4</td>
</tr>
<tr>
<td>Detector</td>
<td>58.7</td>
</tr>
<tr>
<td>Tau neutrino detector</td>
<td>11.6</td>
</tr>
<tr>
<td>Hidden Sector detector</td>
<td>46.8</td>
</tr>
<tr>
<td>Computing and online system</td>
<td>0.2</td>
</tr>
<tr>
<td>Grand total</td>
<td>194.5</td>
</tr>
</tbody>
</table>
Vacuum Vessel
- 10 m x 5 m x 60 m
- Walls thickness: 8 mm (Al) / 30 mm (SS)
- Walls separation: 300 mm
- Liquid scintillator (LS) volume (~36 m³) readout by WLS optical modules (WOM) and PMTs
- Vessel weight ~ 480 t

Magnet designed with an emphasis on low power
- Power consumption < 1 MW
- Field integral: 0.65 Tm over 5m
- Weight ~800 t
- Aperture ~50 m²

Estimated need for vacuum: ~10⁻³ mbar
• Tracking
 – TT, Straw tracker (polyethylene terephthalate tubes), Emulsion

• Particle ID
 – ECAL, HCAL, Muon spectrometer, Emulsion

• Reconstruction
 – Decay vtx, IP, mass

• Momentum
 – ECC, CES with magnet, Muon spectrometer

• Charge
 – CES with magnet, Muon spectrometer

• Timing detector
 – Plastic scintillator or MRPC (multigap RPC), TT
Calorimeters

ECAL
- Almost elliptical shape (5 m x 10 m)
- 2876 Shashlik modules
- 2x2 cells/modules, width=6 cm
- 11504 independent readout channels

HCAL
- Matched with ECAL acceptance
- 2 stations
- 5 m x 10 m
- 1512 modules
- 24x24 cm² dimensions
- Stratigraphy: N x (1.5 cm steel+0.5 cm scint)
- 1512 independent readout channels

Dimensions 60x60 mm²
Radiation length 17 mm
Moliere radius 36 mm
Radiation thickness 25 X₀
Scintillator thickness 1.5 mm
Lead thickness 0.8 mm
Energy resolution 1%
Muon System

- Based on scintillating bars, with WLS fibers and SiPM readout

Requirements:
1) High-efficiency identification of muons in the final state
2) Separation between muons and hadrons/electrons
3) Complement timing detector to reject combinatorial muon background
Timing Detector

Challenges:
- Large area
- Required resolution < 100 ps
- Spatial resolution under study

Two options considered:
- Scintillator bars (NA61/SHINE, COMPASS)
 - NA61/SHINE ToF
 - 100 ps resolution
 - Long scintillator bars
- Multi-gap resistive plate chambers (MRPC)
 - 61 chambers x 120 cm strips, 3 cm pitch
 - Used in ALICE TOF
 - 50 ps resolution achievable
Muon Identification

Muon come from
- $\tau \rightarrow \mu$ decays
- ν_μ CC interactions
- μ identification at primary vertex for background rejection

12 iron layers
11 RPC layers
6 Drift Tube Trackers Planes
** Tau/anti-tau Separation **

** TASK **
- Electric charge and momentum measurement of τ lepton decay products
- Key role for the $\tau \rightarrow h$ decay channel
- 3 OPERA-like emulsion films
- 2 Rohacell spacers (low density material)
- 1 Tesla magnetic field

** PERFORMANCES **
- Electric charge determined up to 10 GeV/c.
- Momentum estimated from the sagitta.
- $\Delta p/p < 20\%$ up to 12 GeV/c
LHM Search

- Generated in the beam-dump, e.g. via light dark photon mediators (V)
- Main production modes
 1) direct production
 2) decay in flight
 3) resonant vector meson mixing

LDM elastic scattering on atomic electrons of the target

High energy beam dump:
- LDM-electron scattering is highly peaked in the forward direction
Charmed hadron production in anti-neutrino interactions selects anti-strange quark in the nucleon.

Strangeness important for precision SM tests and for BSM searches.

W boson production at 14 TeV: 80% via ud and 20% via cs.