GridPix detector with Timepix3 ASIC

Yevgen Bilevych, Klaus Desch, Harry van der Graaf, Fred Hartjes, Kevin Heijhoff, Peter Kluit, Gerhard Raven, Tobias Schiffer, Jan Timmermans

2017-05-25

Invited talk at the TIPP17 conference Beijing
Introduction

What is GridPix?

- GridPix is a type of micro-pattern gaseous detector (MPGD)
- Other well known types of MPGDs use GEM foils and Micromegas

What sets GridPix apart from the others?

- The grid is produced directly on top of ASIC
- Good alignment of grid holes and pixels
- Primary electron counting instead of charge integration improves the energy resolution
Potential of GridPix has been demonstrated in several environments.
First Timepix3-based GridPix

New ASIC (Timepix3) overcomes its predecessor’s limitations:
- Multihit readout
- Simultaneous charge and time measurement of each pixel
- Improved time resolution: \(\sim 1.56\,\text{ns}\)

Here test results will be shown for a single chip detector with a source and in a laser setup.
First Timepix3-based GridPix—it works!

^{90}Sr source, $V_{\text{grid}} = 330\text{V}$, T2K

Cosmic muon track

139 hits / 17 mm
Effect of diffusion visible
Laser setup

- Pulsed UV nitrogen laser (Nikhef)
- Wavelength: 337 nm
- Pulse duration: 1 ns
- Energy: few µJ
- Divergence near diffraction limit

Harry van der Graaf (Nikhef)
Laser setup

- Ionisation enhanced by traces of TMPD (tetra-methyl-phenylene-diamine)
- Ionisation confined to focal point by double photon absorption
- Laser intensity adjusted such that only single electron hits per pixel occur
- Focus point inside detector
Laser measurements—Examples

- About 10 hits per laser pulse
- 960 laser pulses per spot
- Measured spot size dominated by diffusion. About 5 pixels (standard deviation) in the example on the right.

“T2K TPC gas” Ar : CF$_4$: iC$_4$H$_{10}$ (95 : 3 : 2)
- $V_{\text{grid}} = -330 \text{ V}$, $E_{\text{drift}} = 200 \text{ V cm}^{-1}$

Scanning a grid of points

GridPix detector with TPX3 ASIC
Drift velocity

- Measure time of arrival for different laser heights
- We do not know the absolute trigger time-offset, but we only need time differences
- Small detail: arrival time depends on charge. Solution: Different offset for each time-over-threshold (ToT) bin.¹

\[\chi^2 = \sum_{ToT} \sum_n \left(\frac{t[ToT, n] - (t_0[ToT] + x[n]/v_{\text{drift}})}{\sigma[ToT, n]} \right)^2 \]

- Minimising gives \(v_{\text{drift}} = 66.480(7) \, \mu\text{m ns}^{-1} \)
- Magboltz: \(v_{\text{drift}} = 72.819(7) \, \mu\text{m ns}^{-1} \)

¹Time-over-threshold is linearly related to charge

Harry van der Graaf (Nikhef)
GridPix detector with TPX3 ASIC
Diffusion coefficients

- Measure laser spot variance for different laser heights (dominated by diffusion)
- 3.5×10^5 laser pulses per point
 \[
 \sigma_T^2 = D_T (x - x_{\text{grid}}) + \frac{1}{12} (55 \, \mu\text{m})^2
 \]
 \[
 \sigma_L^2 = D_L (x - x_{\text{grid}}) + \sigma_{L,0}^2
 \]
- Grid at $x_{\text{grid}} = 7.886(22)$ mm
- Transverse-diffusion coefficient $\sqrt{D_T} = 309.0(22) \, \mu\text{m}/\sqrt{\text{cm}}$ (Magboltz: 316(4) $\mu\text{m}/\sqrt{\text{cm}}$)
- Longitudinal-diffusion coefficient $\sqrt{D_L} = 254.1(27) \, \mu\text{m}/\sqrt{\text{cm}}$ (Magboltz: 245(3) $\mu\text{m}/\sqrt{\text{cm}}$)
- Small additional contribution to the time resolution of $\sigma_{L,0} \approx 2$ ns

ToA distribution, $x=16\text{mm}$ and ToT$>0.5\mu\text{s}$

\[\times 10^4 \]

Time of arrival [ns]

\[0\quad 2\quad 4\quad 6\quad 90\quad 100\quad 110\quad 120\quad 130\quad 140\]

Variance [mm2]

Transverse diffusion

Variance [mm2] versus x Stage position [mm] (Drift direction)

Longitudinal diffusion, ToT $> 0.5\mu\text{s}$

Variance [ns^2] versus x Stage position [mm] (Drift direction)
Scanning a grid of points

Drift distance: 7.114(22) mm, Dashed rectangle indicates points used in fit

1. Laser spots on edge have cut outs
2. Pixels have low yield
3. Field cage is not uniform at level 100–200 µm
4. Grid not well attached
5. E-field not uniform due to guard-chip distance

*residual column = measured column – expected column
Scanning a grid of points—Residuals

Points in selected region:

All points that are not cut off:

Harry van der Graaf (Nikhef) GridPix detector with TPX3 ASIC 2017-05-25
Conclusions

- Realised GridPix detector with Timepix3 ASIC
- We operated it using T2K TPC gas and $V_{\text{grid}} = -330\, \text{V}$, $E_{\text{drift}} = 200\, \text{V/cm}$
- We used a laser to perform measurements
 - Transverse resolution dominated by diffusion, $\sqrt{D_T} = 309.0(22)\, \mu\text{m}/\sqrt{\text{cm}}$ (Magboltz: 316(4) $\mu\text{m}/\sqrt{\text{cm}}$)
 - Longitudinal resolution possibly also affected by timewalk, $\sqrt{D_L} = 254.1(27)\, \mu\text{m}/\sqrt{\text{cm}}$ (Magboltz: 245(3) $\mu\text{m}/\sqrt{\text{cm}}$)
 - $v_{\text{drift}} = 66.480(7)\, \mu\text{m}\, \text{ns}^{-1}$ (Magboltz: 72.819(7) $\mu\text{m}\, \text{ns}^{-1}$)
 - Precision in column×row plane better than 25 μm in central area
- Test beam with electrons planned at ELSA in Bonn
- Next detector: Quad (4 chips)
Plans new module

Long term plan:
- Built a LCTPC-module with about 100 GridPixes
- Module size: $22 \times 17 \text{mm}^2$—keystone shaped

Short term plan:
- Start with a module equipped with 1 or 2 of the small units
- Currently: Quads, designed to minimise the dead area

Quad assembly
Backup—Scanning a grid of points

- Drift distance: 16.114(22) mm
- Dashed rectangle indicates points used in fit

*residual column = measured column – expected column

Mean: 12.0(27) µm
RMS: 24.6(19) µm

Mean: -5.0(22) µm
RMS: 19.6(15) µm

Harry van der Graaf (Nikhef)