Performance of Resistive Plate Chamber operated with new environmental friendly gas mixtures

Mar Capeans, Roberto Guida, Beatrice Mandelli

CERN

International Conference on Technology and Instrumentation in Particle Physics
Beijing, 25 May 2017
Outline

Green House Gas (GHG) Emission from particle detection at LHC

Resistive Plate Chamber gas mixture and possible replacements

Experimental results with eco-friendly gas mixtures

Conclusions
A greenhouse gas is any gaseous compound that is capable of absorbing infrared radiation, thereby trapping and holding heat in the atmosphere.

GHG for particle detection at LHC

![Chemical structures](image)

- C$_2$H$_2$F$_4$: GWP 1430
- SF$_6$: GWP 5700
- CF$_4$: GWP 22200

GHG emission in Run1 [%]

<table>
<thead>
<tr>
<th>Detector</th>
<th>ATLAS</th>
<th>CMS</th>
<th>ALICE</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$H$_2$F$_4$</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>37.5</td>
</tr>
<tr>
<td>SF$_6$</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contributions

- RPC
- RICH
- CSC
- MWPC
- GEM
F-gas regulation in Europe

European Union “F-gas regulation”:
- Limiting the total amount of the most important F-gases that can be sold in the EU from 2015 onwards and phasing them down in steps to one-fifth of 2014 sales in 2030.
- Banning the use of F-gases in many new types of equipment where less harmful alternatives are widely available.
- Preventing emissions of F-gases from existing equipment by requiring checks, proper servicing and recovery of the gases at the end of the equipment’s life.

HFC phase down
- C$_2$H$_2$F$_4$ is being phased out by EU
- C$_2$H$_2$F$_4$ and SF$_6$ will remain available for research applications
- But price could raise…

HFC phase down schedule
* by Linde Group
The RPC gas mixture

At the very beginning
 RPC worked with Ar and/or R13B1

Replacement of
R13B1 with R134a

Nowadays we look for a replacement for R134a

Hydro-Fluoro-Olefin (HFO)

- C=C double bond
- fluorine-containing
- hydrogen-containing

Hydro-Fluoro-Olefin (HFO)

- C=C double bond
- fluorine-containing
- hydrogen-containing

Refrigerant properties of both HFOs are well known while studies of ionisation processes in particle detectors have started...
Experimental set-up

- Two Resistive Plate Chambers:
 - high pressure laminate
 - 2 mm gas gap
 - read-out strips of 2.1 cm

- Electronics
 - CAEN Digitizer V1730: 16 Channel 14-bit 500 MS/s
 - digitalization of analog signal

- Gas system components validation
 - GC/MS gas analysis
 - Interaction between new gases and gas system components

RPC operation needs to consider ATLAS-CMS requirements and conditions (i.e. existing HV cables, FEB electronics)
Validation of gas and detector components

Requirements for the use in LHC experiments

- Not-flammable gas mixture
 - Some of the gas tested are slightly flammable
 - Not possible to use a flammable gas mixture if leaks are present
- Low vapour pressure at ambient temperature
 - Not enough pressure for operation: it represents a limitation to the maximum delivered flow
 - It might lead to vapour condensation in the gas system
- Mass Flow Controllers
 - Found oily-like pollution in HFO sample bottles
 - MFC suffer pollution: protection of input necessary
 - Calibration with new gases not always available
- Quality of new freons is fundamental for detector operation
 - the selected gases have been developed to be used as refrigerants in industries
 - they could not fully satisfy the detector or experiments requirements
- Gas Chromatograph and mass spectrometer analysis
 - detection of impurities in some samples
Analysis steps

- **Streamer**: poor rate capability, high signal
- **Avalanche**: good rate capability, low signal

Recording of analog signals

- Parameters extracted from the signal:
 - pulse height
 - integrated charge
 - time
- Detector performance analysis:
 - efficiency
 - pulse height for avalanche and streamer
 - charge for avalanche and streamer
 - avalanche vs streamer probability
 - cluster size
 - time resolution
HFO vs R134a

HFO in RPC standard gas mixture
- Both HFOs substituted to C$_2$H$_2$F$_4$, iC$_4$H$_{10}$ or SF$_6$ to study the properties of the new gas
 - similar behaviour of the two HFOs
 - HFOs are much less electronegative than SF$_6$
 - HFOs has different quenching effects than iC$_4$H$_{10}$
- HFOs cannot directly replace C$_2$H$_2$F$_4$
 - higher applied voltage necessary (>14kV)
 - very small avalanche signal

Addition of Argon
- Argon helps in charge developing
 - Ar becomes the first player
- RPCs work in streamer mode
 - not suitable for LHC operation
 - ok for rate < 10Hz/cm2
Addition of He

- Helium helps in reducing the HV working point
 - in first approximation it doesn’t take part in the avalanche processes
 - it helps to reduce the gas partial pressure
- Addition of He in different percentages
 - 30% - 50%
- Increase of streamer probability
 - due to drastically reduction of the \(\text{C}_2\text{H}_2\text{F}_4 \)
 - slight increase of SF\(_6\) does not help

\[H V_{\text{eff}} = H V_{\text{appl}} \frac{p_{\text{STD}}}{p} \frac{T}{T_{\text{STD}}} \]
Addition of He and C$_2$H$_2$F$_4$

- Addition of He does not work for LHC conditions
 - C$_2$H$_2$F$_4$ is still the main contributor for charge reduction
- Try with gas mixtures containing both HFO and C$_2$H$_2$F$_4$
 - HFO reduces the GWP
 - C$_2$H$_2$F$_4$ reduce the signal charge
 - gas mixture GWP is lower than standard RPC gas mixture

![Graph showing efficiency and streamer probability vs. high voltage]
Addition of CO₂

- CO₂ is used as quencher gas in gaseous detectors
 - typical gas mixtures are Ar/CO₂ (70/30 or 85/15) and Ar/CO₂/CF₄ (in different proportions)
- CO₂ is less quencher than iC₄H₁₀
 - RPC uses about 5% of iC₄H₁₀
- Addition of HFO and CO₂ to standard gas mixture

All gas mixtures have same quantity of R134a and HFO
Other possible environmental friendly gases

Alternatives to $C_2H_2F_4$ (GWP 1430):

Hydro-Fluoro-Carbon (HFC)

- HFC-245fa ($C_3H_3F_5$), GWP 1030
- HFC-32 (flam) (CH_2F_2), GWP 675
- HFC-152a (flam) ($C_2H_4F_2$), GWP 120

Alternatives to SF_6 (GWP 22200)*:

- Trifluororiodomethane (CF_3I), GWP <5
- HFB (C_4F_6), GWP 260
- (toxyc!) (C_3F_6), GWP <5

* ... and to CF_4 (GWP 5700)

Beatrice Mandelli
25 May 2017
Example with other HFC (R152a)

- R152a (C\(_2\)H\(_4\)F\(_2\)) vs R134a (C\(_2\)H\(_2\)F\(_4\)): missing two fluorines!
 - equal chemical structure (ethane)
 - R152a GWP: 120
 - R152a: 2/8 \(\rightarrow\) 20%
 - R134a: 4/8 \(\rightarrow\) 50%

- RPC efficient and low streamer probability
 - Region without streamer limited
 - Need to add SF\(_6\)

- R152 is flammable
Example with other HFC (R32)

- \(\text{R32 (CH}_2\text{F}_2 \text{) vs R134a (C}_2\text{H}_2\text{F}_4 \text{): missing one carbon and two fluorines!} \)
 - \(\text{R32 has a very simple chemical structure based on methane} \)
 - \(\text{R32 has one carbon and two fluorine atoms less than R134a making suppose that the} \)
 \(\text{electron attachment is lower} \)
- \(\text{RPC efficient at lower working point} \)
- \(\text{Streamer probability is almost 100%} \)
 - \(\text{Poor quenching capacity} \)

\[\text{GWP} \sim 1000\]
Summary of results

More than 50 gas mixtures tested

<table>
<thead>
<tr>
<th>Chem struct</th>
<th>GWPmix</th>
<th>HV (V)</th>
<th>Streamer (%)</th>
<th>Pulse charge (pC)</th>
<th>ΔV Eff-Stream (V)</th>
<th>Clu Size (strip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R32-iC₄H₁₀-SF₆ 0.6</td>
<td>c</td>
<td>1030</td>
<td>7500</td>
<td>14</td>
<td>0.5 / 6.5</td>
<td>600</td>
</tr>
<tr>
<td>R134a-iC₄H₁₀-SF₆ 0.3</td>
<td>c-c</td>
<td>1490</td>
<td>9600</td>
<td>1.5</td>
<td>0.5 / 6</td>
<td>1000</td>
</tr>
<tr>
<td>R152a-iC₄H₁₀-SF₆ 0.6</td>
<td>c-c</td>
<td>430</td>
<td>10000</td>
<td>10</td>
<td>1 / 8.5</td>
<td>760</td>
</tr>
<tr>
<td>R245fa-iC₄H₁₀-SF₆ 0.6-He 50</td>
<td>c-c-c</td>
<td>1260</td>
<td>6600</td>
<td>20</td>
<td>1 / 7</td>
<td>610</td>
</tr>
<tr>
<td>HFO-iC₄H₁₀-SF₆ 0.3-Ar 42.5</td>
<td>c=c-c</td>
<td>130</td>
<td>8900</td>
<td>70</td>
<td>2 / 15</td>
<td>160</td>
</tr>
<tr>
<td>HFO-iC₄H₁₀-SF₆ 0.6-He 50</td>
<td>c=c-c</td>
<td>370</td>
<td>9000</td>
<td>20</td>
<td>1.5 / 8</td>
<td>700</td>
</tr>
<tr>
<td>HFO-R134 37.45-iC₄H₁₀-SF₆ 0.6-He 20</td>
<td>c=c-c</td>
<td>890</td>
<td>10500</td>
<td>1.8</td>
<td>0.5 / 6</td>
<td>970</td>
</tr>
<tr>
<td>HFO-R134a 40-iC₄H₁₀-SF₆ 0.6-He 20</td>
<td>c=c-c</td>
<td>730</td>
<td>10500</td>
<td>8</td>
<td>0.5 / 6.5</td>
<td>700</td>
</tr>
<tr>
<td>HFO-R134a 50-iC₄H₁₀-He 20</td>
<td>c=c-c</td>
<td>430</td>
<td>10800</td>
<td>50</td>
<td>1.5 / 8</td>
<td>400</td>
</tr>
<tr>
<td>HFO-R134a 22.5 -iC₄H₁₀-CO₂ 50- SF₆ 1</td>
<td>c=c-c</td>
<td>560</td>
<td>10500</td>
<td>5</td>
<td>0.5 / 6.5</td>
<td>950</td>
</tr>
</tbody>
</table>

- C and C2 structures —> direct operation
- C3 structure —> addition of Ar, He or CO₂
 - Ar brings to high streamer probability
 - He reduces the HV working point
 - CO₂ based gas mixtures look promising
- Still necessary to have R134a in the mixture to be competitive to standard gas mixture
Conclusions

Several reasons to look for a new RPC gas mixture
- $\text{C}_2\text{H}_2\text{F}_4$ will be subject to phase out and price instability in Europe
- RPC systems at LHC dominate the GHG emission due to particle detection at CERN

Alternatives to $\text{C}_2\text{H}_2\text{F}_4$ already available on the market
- HFO as replacement of $\text{C}_2\text{H}_2\text{F}_4$ as refrigerant
- To be tested for aging, radiation hardness, reactivity to detector and gas components

Not an easy task to find a gas mixture to replace the current one for LHC experiments
- Complex gas mixtures (4-6 components) necessary but still not good as standard one
- Keep going on to search the good gas mixture composition

In case of streamer mode, operation with new environmental friendly gas mixture possible
- Addition of Ar or He reduce the HV working point

For new experiments possible to work with the new environmental friendly gases
- Impact on gas system under control
- Dedicated electronics
- Detector HV working point higher