The VSiPMT project: characterization of the second generation of prototypes
TIPP 2017 - International Conference on Technology and Instrumentation in Particle Physics
Beijing, People’s Republic of China – May 22-26, 2017

Daniele Vivolo
INFN Section of Naples
• Introduction
• Timeline
• The EB-MPPC100 prototype
• Characterization:
 o experimental setup
 o photon spectra
 o dark noise
 o gain
 o efficiency
 o focusing
 o linearity
 o timing
 o photocathode homogeneity
• Conclusions and perspectives
Beyond PMTs

- fluctuations in the first dynode gain ➔ single photon counting difficult;
- linearity strongly related to the gain (decreases as gain increases);
- transit time spreads over large fluctuations;
- complex and expensive mechanical structure;
- sensitivity to magnetic fields;
- need of voltage dividers ➔ power consumption and failure risks increase.

New generation of semiconductor photodetectors, based on inverse p–n junction:

- PIN photodiodes: no gain;
- avalanche photodiodes (APD): gain of few hundreds;
- avalanche photodiodes in linear Geiger-mode (GM-APD, or SiPM): gain of $10^5 - 10^6$.
The Vacuum Silicon PhotoMultiplier Tube (VSiPMT)

An innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT standard envelope.

The classical dynode chain of a PMT is replaced with a SiPM, acting as an electron multiplying detector.
Unprecedented features:
- Photon counting capability;
- Low power consumption;
- Large sensitive surface;
- Excellent timing performances (low TTS);
- High stability (not depending on HV).

Photon counting

Multiplication gain (series)

Energy resolution $\alpha 1/(d_{1st})^{1/2}$

$G = d^n = (kV_d)^n$

“Parallel” gain (digital)

go no statistic fluctuations

Time resolution

$\sigma^2_{total} = \sigma^2_{pc_{em}} + \sigma^2_{em}$

$\sigma_{pc_{em}} \propto (V_{pc_{em}})^{-1/2}$

$\sigma_{em} \propto (d_{1st})^{-1/2}$

Gain stabilization

$dG/G = n \frac{dV_d}{V_d} = n \frac{dV_b}{V_b}$

easy, low voltage
A ptolemaic revolution!

The VSiPMT follows a technology path **pioneered by HAPDs**

Both hybrid photodetectors, based on the combination of photocathode and semicon. technologies. Anyway...

In a HAPD bombardment gain is required

APD drawbacks;
- \(G = \frac{E_{\text{phe}}}{E_{e,h}} \approx 10^4 - 10^5 \)
- too low Gain. HV gain required
- G **depending** on HV
- Need a strong HV critical **stabilization**
- Difficult and expensive insulation

In a VSiPMT the gain is made by the amplification stage only, as for PMTs.

VSiPMT advantages:
- \(G > 10^6 \): a factor 10 higher.
- **Low HV**, no need for bombardment gain
- **Low voltage Gain**: easy to stabilize
- Normal insulation

![Diagram showing HAPD and VSiPMT with similar but different concepts](image-url)
Timeline

2007

High Gain Hybrid Photomultipliers Based on Solid State p-n Junctions in Gaiger Mode and their use in Astoparticles Physics

2014

A new Design for a High Gain Vacuum Photomultiplier: The Silicon PMT Used as Amplification Stage

Proof of feasibility of the Vacuum Silicon Photomultiplier Tube (VSiPMT)

A new high-gain vacuum photomultiplier based upon the amplification of a Gaiger-mode p-n junction

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Apositronic Physics

Daniele Vivolo - TIPP 2017

22/05/17
Today: second generation of VSiPMT prototypes

EB-MPPC100

Side view

Dimensional outlines

$V_{bd} = 70V$

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Response</td>
<td>200 to 650</td>
<td>nm</td>
</tr>
<tr>
<td>Photocathode Material</td>
<td>Bialkali</td>
<td>-</td>
</tr>
<tr>
<td>Effective Area</td>
<td>$\Phi 22$</td>
<td>mm</td>
</tr>
<tr>
<td>Window Material</td>
<td>Borosilicate Glass</td>
<td>-</td>
</tr>
<tr>
<td>Target</td>
<td>MPPC 3x3 mm</td>
<td>-</td>
</tr>
</tbody>
</table>

Maximum Ratings (Absolute Maximum Values)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photocathode Voltage</td>
<td>-2000</td>
<td>V dc</td>
</tr>
<tr>
<td>MPPC Reverse Bias Voltage at 25°C</td>
<td>$+72.0$</td>
<td>V dc</td>
</tr>
</tbody>
</table>
Experimental setup

- Laser head 407 nm
- Laser PLP
- DARK BOX
- Variable attenuator
- Power meter
- splitter

Oscilloscope
LeCroy WaveRunner 104 Mxi, 1 GHz Analog Bandwidth, 8 bit resolution
Photon spectra

- Excellent photon counting capability!
- Dark noise and gain exhibit no significative difference between HV on (-1.9kV) and HV off

Dark noise

- Photocathode HV: -1.9 kV
- SiPM bias voltage: 71.0 V
SiPM photoelectron trigger efficiency

Phenomenology

- photoelectrons from photocathode
 - 1. photoelectron with not enough energy to enter in depletion region (p+n) and to trigger Geiger avalanche.
 - 2. photoelectron with very marginal energy to enter in depletion region (p+n) and to trigger Geiger avalanche.
 - 3. photoelectron with enough energy to enter in depletion region (p+n) and to trigger Geiger avalanche.

Definition

\[\varepsilon_{\text{total}}(\text{PDE}) = \varepsilon_{\text{photocathode}} \times \varepsilon_{\text{fill-factor-SiPM}} \times \varepsilon_{\text{trigger}} \times \varepsilon_{\text{focusing}} \]

- \(\varepsilon_{\text{photocathode}} \) = photocathode efficiency (fixed number @fixed \(\lambda \))
- \(\varepsilon_{\text{fill-factor-SiPM}} \) = geometrical efficiency (fixed number)
- \(\varepsilon_{\text{trigger}} \) = trigger efficiency (depends on the High Voltage)
- \(\varepsilon_{\text{focusing}} \) = focusing efficiency

When the high voltage gives to all the photoelectrons enough energy to penetrate inside the p-region of the SiPM, the behaviour of \(\varepsilon_{\text{trigger}} \) as a function of high voltage becomes flat (plateau \(\varepsilon_{\text{trigger}} = 1 \)) and the total efficiency will be a fixed number (@fixed \(\lambda \)).
SiPM photoelectron trigger efficiency

Simulations

Range and energy deposit of the photoelectrons in the SiPM as a function of SiO₂ passivation layer thickness have been simulated (range: 150 to 15nm).

Assumption: the average energy of photoelectrons outcoming from the photocathode is 1 eV.

Simulations show that the HV to have $\epsilon_{\text{trigger}} = 1$ rises with the passivation layer thickness.
Focusing efficiency (and linearity, as well) are maximized if in a condition of uniformly illuminated photocathode all the SiPM pixels are hit by the accelerated photoelectrons.

The ideal case:

- **focusing efficiency = 1**, optimized linearity

 - If the photoelectron spot is larger than the SiPM size, some photoelectron will systematically miss the target → focusing efficiency < 1

 - On the other side, if the photoelectron beam is too much “squeezed”, the focusing efficiency will still be 1 but the device will lose linearity

Even in the ideal case, the SiPM pixels that are not involved in the detection process are still contributing to dark noise!
One step back

7x7 mm² Borosilicate glass entrance window
3 mm diameter GaAsP photocathode
2 prototypes:
MPPC 1 mm² / 50 mm / 400 cells
MPPC 1 mm² /100 mm / 100 cells

Special non-windowed series for e optimization.
Low photocathode voltage (-2,5/3 kV expected).

Efficiency is highly stable over 3200 V.
No need for high voltage stabilization.
Assuming a plateau region working regime and an optimized focusing:

\[\varepsilon_{\text{total}}(\text{PDE}) = \varepsilon_{\text{photocathode}} \times \varepsilon_{\text{fill-factor-SiPM}} \times \varepsilon_{\text{trigger}} \times \varepsilon_{\text{focusing}} \]

\[0.09 = 0.12 \times 0.78 \times 1 \times 1 \]

- The maximum PDE measured for the prototype is \(\approx 2\% \)
- The plateau region is not reached!

Reason: maximum rating for PMT HV is -2kV! (insulation issue)

\[\varepsilon_{\text{total}}(\text{PDE}) = \varepsilon_{\text{photocathode}} \times \varepsilon_{\text{fill-factor-SiPM}} \times \varepsilon_{\text{trigger}} \times \varepsilon_{\text{focusing}} \]

\[0.02 = 0.12 \times 0.78 \times ? \times ? \]
No clue about the characteristics of the SiPM inside the prototype.

Measurement of focusing efficiency is done as follows:

• the photocathode is illuminated with high photon number.
• Under this condition, the SiPM is saturated.
• Number of maximum fired cells is calculated as:

\[
\text{max fired cells} = \frac{Q \text{ (total MPPC charge collected)}}{Q \text{ (single MPPC charge)}}
\]

Results: max fired cells = 900 ± 15
over a total MPPC cells = 900

Radius of photoelectron focusing area circumscribes the MPPC square shape or is outside the square. The system is UNDERFOCUSED.
Not possible to say how much! $\epsilon_{\text{focusing}} < 1$
The linearity curve of a SiPM follows the well-known formula:

$$N_{\text{fired}} = N_{\text{total}} \times \left[1 - \exp\left(-\frac{N_{\text{photon}} \times \text{PDE}}{N_{\text{total}}}\right)\right]$$

From the linear fit:

- N_{total} (max fired cells) = $(9.40 \pm 1.0) \times 10^2$
- PDE = (2.77 ± 0.12) %

in quite good agreement with the measured PDE

UNDERFOCUSED system ($\varepsilon_{\text{focusing}} < 1$)

A well-focused devise would have N_{total} (max fired cells) ≈ 700
• The output from the VSiPMT is fed as the stop signal via a discriminator;

• We measure the time interval between the "start" and "stop" signals.

TTS = 2.58 ns (FWHM)
4% of over-efficiency for photon transparency only at center of photocathode. Negligible effect in all usual photodetection applications.

Projection:

optimized device (photocathode QE ≈ 30%, $\epsilon_{\text{focusing}}=1$)

- Projection of 3x3 the SiPM on the photocathode obtained by direct photon detection when H.V. is off.
- Quantitative effect:
 - +4% of over-efficiency in 1.7% of total 1 inch photocathode surface area.
 - 2 inch photocathode: less and less effect.
The aim of the EB-MPPC100 1INCH prototype is the proof of feasibility of an inch-size VSiPMT. Results are excellent!

The device exhibits outstanding features:

- Excellent photon counting capability
- Large sensitive surface (first inch-size prototype)
- Challenging time performances
- Major limit: High Voltage limited to 2000 Volt.

The drawback is the low efficiency. The energy inferred by HV to the photoelectrons is not enough to overcome the SiPM entrance window and to penetrate in the p-region of the SiPM (absence of a plateau in the efficiency plot). Consequently, also stability is affected.

- Also the underfocusing of the photoelectrons could be improved by a better spatial positioning of the SiPM. Undramatic: easy to solve (not optimized device).

An optimized insulation or an improved design can help to bring the HV at the correct point, thus allowing to work in the PDE plateau region and so at the maximum efficiency.

Ready for the next step!