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Observation of two resonant structures ine+
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The cross sections ofe+e− → π+π−hc at center-of-mass energies from 3.896 to 4.600 GeV are mea-
sured using data samples collected with the BESIII detectoroperating at the Beijing Electron Positron Col-
lider. The cross sections are found to be of the same order of magnitude as those ofe+e− → π+π−J/ψ and
e+e− → π+π−ψ(2S), but the line shape is inconsistent with theY states observed in the latter two modes.
Two structures are observed in thee+e− → π+π−hc cross sections around 4.22 and 4.39 GeV/c2, which we
call Y (4220) andY (4390), respectively. A fit with a coherent sum of two Breit-Wigner functions results in a
mass of(4218.4 ± 4.0 ± 0.9) MeV/c2 and a width of(66.0 ± 9.0 ± 0.4) MeV for theY (4220), and a mass
of (4391.6 ± 6.3 ± 1.0) MeV/c2 and a width of(139.5 ± 16.1 ± 0.6) MeV for theY (4390), where the first
uncertainties are statistical and the second ones systematic.

PACS numbers: 14.40.Rt, 14.40.Pq, 13.66.Bc, 13.25.Gv

In the last decade, a series of charmonium-like states have
been observed ate+e− colliders. These states challenge
the understanding of charmonium spectroscopy as well as
QCD calculations [1, 2]. According to potential models,
there are five vector charmonium states between theDD̄
mass threshold and 4.7GeV/c2, namely the3S, 2D, 4S,
3D, and5S states [1]. From experimental studies, besides
the three well established structures observed in the inclu-
sive hadronic cross section [3],i.e., ψ(4040), ψ(4160), and
ψ(4415), five Y states,i.e., Y (4008), Y (4230), Y (4260),
Y (4360), andY (4660) have been reported in initial state ra-
diation (ISR) processese+e− → γISRπ

+π−J/ψ or e+e− →
γISRπ

+π−ψ(2S) at the B-factories [4–11] or in the di-
rect production processes at the CLEO and BESIII experi-
ments [12, 13] The overpopulation of structures in this region
and mismatch of the properties between the potential model
prediction and experimental measurements make them good
candidates for exotic states. Various scenarios have been pro-
posed, which interpret one or some of them as hybrid states,
tetraquark states, or molecular states [14].

The study of charmonium-like states in different produc-
tion processes supplies useful information on their proper-
ties. The processe+e− → π+π−hc was first studied by
CLEO [15] at center-of-mass (CM) energies

√
s from 4.000

to 4.260 GeV. A10σ signal at 4.170 GeV and a hint of a rising
cross section at 4.260 GeV were observed. Using data sam-
ples taken at 13 CM energies from 3.900 to 4.420 GeV [16],

BESIII reported the measurement of the cross section of
e+e− → π+π−hc [17]. Unlike the line shape of the pro-
cesse+e− → π+π−J/ψ, there is a broad structure in the
high energy region with a possible local maximum at around
4.23 GeV ine+e− → π+π−hc. Based on the CLEO mea-
surement at

√
s = 4.170 GeV and the BESIII measurement,

two assumptions were made to describe the cross section in
Ref. [18]. In both assumptions, a narrow structure exists at
around 4.23 GeV, while the situation in the high energy re-
gion is unclear due to the lack of experimental data.

In this Letter, we present a follow-up study ofe+e− →
π+π−hc at CM energies from 3.896 to 4.600 GeV using
data samples taken at 79 energy points [19] with the BE-
SIII detector [20]. Two resonant structures are observed at√
s = 4.22 and 4.39 GeV (hereafter referred to asY (4220)

andY (4390)). The integrated luminosity at each energy point
is measured with an uncertainty of 1.0% using large-angle
Bhabha events [21, 22]. There are 17 energy points where
the integrated luminosities are larger than 40 pb−1 (referred
to as ‘XYZ data sample’ hereafter), while the integrated lu-
minosities for the other energy points are smaller than 20 pb−1

(referred to as ‘R-scan data sample’ hereafter). The CM en-
ergies for theXY Z data sample are measured withe+e− →
γISR/FSRµ

+µ− events with an uncertainty of±0.8MeV [23],
which is dominated by the systematic uncertainty. A sim-
ilar method is used for the R-scan data sample with multi-
hadron final states [24]. In this study, thehc is reconstructed
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via its electric-dipole transitionhc → γηc with ηc → Xi,
whereXi is one of 16 exclusive hadronic final states:pp̄,
2(π+π−), 2(K+K−), π+π−K+K−, π+π−pp̄, 3(π+π−),
2(π+π−)K+K−, K0

SK
±π∓, K0

SK
±π∓π+π−, K+K−π0,

pp̄π0, K+K−η, π+π−η, 2(π+π−)η, π+π−π0π0, and
2(π+π−π0). Here, theK0

S is reconstructed using its decay
to π+π−, and theπ0 andη from theγγ final state.

Monte Carlo (MC) simulated events are used to optimize
the selection criteria, determine the detection efficiency, and
estimate the possible backgrounds. The simulation of the
BESIII detector is based onGEANT4 [25] and includes the
geometric description of the BESIII detector and the detec-
tor response. For the signal process, we use a sample of
e+e− → π+π−hc MC events generated according to phase
space. ISR is simulated withKKMC [26] with a maximum en-
ergy for the ISR photon corresponding to theπ+π−hc mass
threshold.

We select signal candidates with the same method as that
described in Ref. [17]. Figure 1 shows the scatter plot of the
invariant mass of theηc candidate versus the one of thehc
candidate for the data sample at

√
s = 4.416 GeV, as well

as the invariant mass distribution ofγηc in the ηc signal re-
gion. A clearhc → γηc signal is observed. Theηc signal
region is defined by a mass window around the nominalηc
mass [3], which is±50 MeV/c2 with efficiency about 84%
(±45 MeV/c2 with efficiency about 80%) from MC simula-
tion for final states with only charged orK0

S particles (for
those includingπ0 or η).

We determine the number ofπ+π−hc signal events (nobs
hc

)
from theγηc invariant mass distribution. For theXY Z data
sample, theγηc mass spectrum is fitted with the MC sim-
ulated signal shape convolved with a Gaussian function to
reflect the mass resolution difference between the data and
MC simulation, together with a linear background. The fit
to the data sample at

√
s = 4.416 GeV is shown in Fig. 1

(right). The tail on the high mass side is due to events with
ISR; this is simulated withKKMC in MC, and its fraction
is fixed in the fit. For the data samples with large statistics
(
√
s = 4.226, 4.258, 4.358, and 4.416 GeV), the fit is ap-

plied to the 16ηc decay modes simultaneously with the num-
ber of signal events in each decay mode constrained by the
corresponding branching fraction [27]. For the data samples
at the other energy points, we fit the mass spectrum summed
over all ηc decay modes. For the R-scan data sample, the
number of signal events is calculated by counting the en-
tries in thehc signal region [3.515, 3.535] GeV/c2 (nsig) and
the entries in thehc sideband regions [3.475, 3.495] GeV/c2

and [3.555, 3.575] GeV/c2 (nside) using the formulanobs
hc

=

nsig−f ·nside. Here, the scale factorf = 0.5 is the ratio of the
size of the signal region and the background region, and the
background is assumed to be distributed linearly in the region
of interest.

The Born cross section is calculated from

σB =
nobs
hc

L(1 + δ)|1 + Π|2 ∑16

i=1 ǫiB(ηc → Xi)B(hc → γηc)
,

wherenobs
hc

is the number of observed signal events,L is the
integrated luminosity,(1 + δ) is the ISR correction factor ob-
tained using the QED calculation as described in Ref. [28] and
taking the formula used to fit the cross section measured in this
analysis after two iterations as input,|1+Π|2 is the correction
factor for vacuum polarization [29],ǫi andB(ηc → Xi) are
the detection efficiency and branching fraction for thei-th ηc
decay mode [27],B(hc → γηc) is the branching fraction of
hc → γηc [3]. The Born cross sections are shown in Fig. 2
with dots and squares for R-scan andXY Z data sample, re-
spectively, and the results are summarised in the supplemental
material [19] together with all numbers used in the calculation
of the Born cross sections.

Systematic uncertainties in the cross section measurement
mainly come from the luminosity measurement, the branching
fraction ofhc → γηc andηc → Xi, the detection efficiency,
the ISR correction factor, and the fit. The uncertainty due to
the vacuum polarization is negligible. The uncertainty in the
integrated luminosity is 1% at each energy point. The uncer-
tainty sources for the detection efficiency include systematic
uncertainties in tracking efficiency (1% per track), photonre-
construction (1% per photon), andK0

S reconstruction (1.2%
perK0

S). Further uncertainties arise from theπ0/η mass win-
dow requirement (1% perπ0/η), theχ2

4C requirement,ηc pa-
rameters and line shape, possible intermediate states in the
π±hc andπ+π− mass spectra, and the limited statistics of the
MC simulation.

The uncertainty due to theχ2
4C requirement is estimated

by correcting the helix parameters of the simulated charged
tracks to match the resolution found in data, and repeating the
analysis [30]. Uncertainties due to theηc parameters and line
shape are estimated by varying them in the MC simulation.
When producing MCe+e− → π+π−hc events through the
intermediate statesZc(3900) or Zc(4020), the parameters of
theZc(3900) andZc(4020) are fixed to the average values
from the published measurements [11, 17, 31–33]. The quan-
tum numbers of bothZc(3900) andZc(4020) are assumed
to beJP = 1+. The differences in the efficiency obtained
from phase space MC samples and those with intermediateZc

states are taken as the uncertainties from possible intermedi-
ate states in theπ±hc system. The uncertainty from interme-
diate states in theπ+π− system is estimated by re-weighting
the π+π− mass distribution in the phase space MC sample
according to the data, and the resulting difference in the effi-
ciency is considered as uncertainty. The uncertainties dueto
data/MC differences in the detection efficiency are determined
to be between 5.5% and 10.8%, depending on theηc decay
modes and the CM energy. Combining the uncertainties for
the branching fractions ofηc decays [27], the uncertainties for
the average efficiency

∑16

i=1 ǫiB(ηc → Xi) are between 6.4%
and 9.1% depending on the CM energy.
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FIG. 1. (left panel) Scatter plot of the mass of theηc candidateMηc versus the mass of thehc candidateMγηc . (right panel) Distribution of
Mγηc for events in theηc signal region. Points with error bars show the data at

√
s = 4.416 GeV and the curves are the best fit described in

the text.

The uncertainty in the ISR correction is estimated as de-
scribed in Ref. [31]. Uncertainties due to the choice of the
signal shape, the background shape, the mass resolution, and
fit range are estimated by changing thehc and ηc resonant
parameters and line shapes in the MC simulation, changing
the background function from a linear to a second-order poly-
nomial, changing the mass resolution difference between the
data and the MC simulation by one standard deviation, and by
extending or shrinking the fit range.

Assuming all of the sources are independent, the total sys-
tematic uncertainty in theπ+π−hc cross section measurement
is determined to be 9.4%–13.6% depending on the CM energy.
The uncertainty inB(hc → γηc) is 11.8% [3], common to all
energy points, and quoted separately in the cross section mea-
surement. Altogether, about 95% of the total systematic errors
are common to all the energy points.

A maximum likelihood method is used to fit the dressed
cross sections (with vacuum polarization effects) to determine
the parameters of the resonant structures. The likelihood is
constructed taking the fluctuations of the number of signal and
background events into account (the definition is describedin
the supplemental material [19]). Assuming that theπ+π−hc
signal comes from two resonances, the cross section is param-
eterized as the coherent sum of two constant width relativistic
Breit-Wigner functions,i.e.,

σ(m) = |B1(m) ·
√

P (m)

P (M1)
+ eiφB2(m) ·

√

P (m)

P (M2)
|2,

whereBj(m) =

√
12πΓel

j
Γj

m2−M2
j
+iMjΓj

with j = 1 or 2 is the

Breit-Wigner function, andP (m) is the 3-body phase space
factor. The massesMj, the total widthsΓj , the products
of the electronic partial width and the branching fraction to
π+π−hc Γ

el
j = (Γe+e−B(π+π−hc))j , and the relative phase

φ between the two Breit-Wigner functions are free parame-
ters in the fit. Only the statistical uncertainty is considered

in the fit. There are two solutions from the fit, one of them
is shown in Fig. 2. The second solution is very close to
the one shown here. This can been proved analytically as
derived in Ref. [34], which relates the two solutions from
the fit when a sum of two coherent Breit-Wigner functions
is used. The parameters determined from the fit areM1 =
(4218.4± 4.0) MeV/c2, Γ1 = (66.0± 9.0) MeV, andΓel

1 =
(4.6± 4.1) eV for Y (4220),M2 = (4391.6± 6.3) MeV/c2,
Γ2 = (139.5 ± 16.1) MeV, andΓel

2 = (11.8 ± 9.7) eV for
Y (4390). The relative phaseφ is (3.1 ± 1.5) rad. The cor-
relation matrix of the fit parameters shows large correlation
between theΓel

j andφ (see supplemental material [19]).

Fitting the dressed cross section with only one resonance
yields a worse result, the change of the likelihood value from
two resonances to one resonance is[∆(−2lnL) = 113.5].
Taking the change in the number of degrees of freedom (4)
into account, the significance for the assumption of two reso-
nant structures over the assumption of one resonant structure
is 10σ. We also fit the cross section with the coherent sum
of three Breit-Wigner functions, or the coherent sum of two
Breit-Wigner functions and a phase space term. Both assump-
tions improve the fit quality, but the significances of the third
resonance and the phase space term are only2.6σ and2.9σ,
respectively.

The systematic uncertainties in the resonance parameters
mainly come from the absolute CM energy measurement, the
CM energy spread, and the systematic uncertainty on the cross
section measurement. The uncertainty from the CM energy
measurement includes the uncertainty of the CM energy and
the assumption made in the measurement for R-scan data sam-
ple. Due to the low statistics at each energy point in the R-scan
data sample, we approximate the difference between the re-
quested and the actual center-of-mass energy by a common
constant. To assess the systematic uncertainty connected with
this assumption, we replace the constant by a CM energy-
dependent second-order polynomial. The systematic uncer-
tainty of the CM energy is common for all the energy points
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and will propagate to the mass measurement (0.8 MeV). The
changes on the parameters are taken as uncertainty. The un-
certainty from CM energy spread is estimated by convolut-
ing the fit formula with a Gaussian function with a width of
1.6 MeV, which is beam spread, measured by the Beam En-
ergy Measurement System [35]. The uncertainty from the
cross section measurement is divided into two parts. The first
one is uncorrelated among the different CM energy points and
comes mainly from the fit to theγηc invariant mass spectrum
to determine the signal yields. The corresponding uncertainty
is estimated by including the uncertainty in the fit to the cross
section, and taking the differences on the parameters as un-
certainties. The second part includes all the other sources, is
common for all data points (14.8%), and only affects theΓel

measurement. Table I summarizes the systematic uncertainty
in the resonance parameters.

In summary, we measure thee+e− → π+π−hc Born cross
section using data at 79 CM energy points from 3.896 to
4.600 GeV. The cross sections are of the same order of mag-
nitude as those of thee+e− → π+π−J/ψ and e+e− →
π+π−ψ(2S) [4–12], but with a different line shape. The
cross section drops in the high energy region, but more slowly
than for thee+e− → π+π−J/ψ process. Assuming the
π+π−hc events come from two resonances, we obtainM =
(4218.4± 4.0± 0.9) MeV/c2, Γ = (66.0± 9.0± 0.4) MeV,
andΓel = (4.6 ± 4.1 ± 0.8) eV for Y (4220), andM =

(4391.6±6.3±1.0)MeV/c2, Γ = (139.5±16.1±0.6)MeV,
andΓel = (11.8 ± 9.7 ± 1.9) eV for Y (4390), with a rel-
ative phase ofφ = (3.1 ± 1.5 ± 0.2) rad. The parame-
ters of these structures are different from those ofY (4260),
Y (4360), and ψ(4415) [3]. The resonance parameters of
Y (4220) are consistent with those of the resonance observed
in e+e− → ωχc0 [13].

The two resonances observed ine+e− → π+π−hc process
are located in the mass region between 4.2 and 4.4 GeV/c2,
where the vector charmonium hybrid states are predicted from
various QCD calculations [36, 37]. The mass ofY (4220)
is lower than that ofY (4260) observed in thee+e− →
π+π−J/ψ process. The smaller mass is consistent with some
of the theoretical calculations for the mass ofY (4260) when
explaining it as aD1D̄ molecule [38, 39].
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TABLE I. The systematic uncertainty in the measurement of the resonance parameters, whereΓel = Γe+e−B(π+π−hc) is the product of
the electronic partial width and the branching fraction toπ+π−hc. CM energy1 represents the uncertainty from the systematic uncertainty
of CM energy measurement and CM energy2 is the uncertainty from assumption made in the measurement of CM energy for R-scan data
sample. Cross section1(2) represents the uncertainty from the systematic uncertainties of the cross section measurement which are un-correlated
(common) in each energy point.

Sources
Y (4220) Y (4390)

φ (rad)
M (MeV/c2) Γ (MeV) Γel (eV) M (MeV/c2) Γ (MeV) Γel (eV)
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Cross section1(2) 0.1(−) −(−) 0.2(0.7) 0.6(−) 0.5(−) 0.4(1.7) 0.1(−)
Total 0.9 0.4 0.8 1.0 0.6 1.9 0.2
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