Review of 3+1D Hydordynamics Evolution

Chi Ding

IOPP-9421

October 19, 2016

$t-z$ coordinates $\rightarrow \tau-\eta$ coordinates

$$
\left\{\begin{array} { l }
{ t (\text { laboratory time }) } \\
{ z (\text { beam direction }) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\left.\tau=\sqrt{t^{2}-z^{2}} \text { (longitudinal proper time }\right) \\
\eta=\tanh ^{-1}(z / t)(\text { space-time rapidity })
\end{array}\right.\right.
$$

- Puzzling part

Covariant derivative in curvilinear coordinates

Covariant derivative in curvilinear coordinates

A vector a expend by the local frame by point $M\left(x^{1}, x^{2}, \cdots, x^{n}\right)$ move to another point $N\left(x^{1}+d x, x^{2}+d x^{2}, \cdots, x^{n}+d x^{n}\right)$, where $d \mathbf{a}=0$, thus

$$
\begin{align*}
0 & =\mathbf{x}_{\alpha} d a^{\alpha}+a^{\alpha} d \mathbf{x}_{\alpha} \\
& =\mathbf{x}_{\alpha} d a^{\alpha}+a^{\beta} \frac{\partial^{2} \mathbf{x}}{\partial x^{\beta} \partial x^{\gamma}} d x^{\gamma} \tag{1}
\end{align*}
$$

we change the dummy index of the second term, and $a^{\beta} \frac{\partial^{2} x}{\partial x^{\beta} \partial x^{\gamma}}$ can be expended by the local frame at point M,

$$
\frac{\partial^{2} \mathbf{x}}{\partial x^{\beta} \partial x^{\gamma}}=\Gamma_{\beta \gamma}^{\alpha} \mathbf{x}_{\alpha}
$$

put it into the formula (1)

$$
\left(d a^{\alpha}\right) \mathbf{x}_{\alpha}=-\left(\Gamma_{\beta \gamma}^{\alpha} a^{\beta} d x^{\gamma}\right) \mathbf{x}_{\alpha}
$$

Covariant derivative in curvilinear coordinates

 as the \mathbf{x}_{α} are independent with each other,$$
d a^{\alpha}=-\Gamma_{\beta \gamma}^{\alpha} a^{\beta}
$$

The Christoffel symbol $\Gamma_{\beta \gamma}^{\alpha}$:

$$
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \lambda}\left(\frac{\partial g_{\lambda \gamma}}{\partial x^{\beta}}+\frac{\partial g_{\beta \lambda}}{\partial x^{\gamma}}-\frac{\partial g_{\gamma \beta}}{\partial x^{\lambda}}\right)
$$

Now we can derive the covariant derivative. Consider a vector field $\mathbf{a}(M)$, whose covariant components are $a_{\alpha}\left(x^{1}, x^{2}, \cdots, x^{n}\right)$. When coordinates transform, a_{α} changes to,

$$
a_{\alpha^{\prime}}=\frac{\partial x^{\alpha}}{\partial x^{\alpha^{\prime}}} a^{\alpha}
$$

take the derivative with respect to $x^{\beta^{\prime}}$,

$$
\frac{\partial a_{\alpha^{\prime}}}{\partial x^{\beta^{\prime}}}=\frac{\partial x^{\alpha}}{\partial x^{\alpha^{\prime}}} \frac{\partial x^{\beta}}{\partial x^{\beta^{\prime}}} \frac{\partial a_{\alpha}}{\partial x^{\beta}}+\frac{\partial^{2} x^{\alpha}}{\partial x^{\alpha^{\prime}} \partial x^{\beta^{\prime}}} a_{\alpha}
$$

Covariant derivative in curvilinear coordinates

though some calculation we can derive that

$$
\frac{\partial a_{\gamma^{\prime}}}{\partial x^{\beta^{\prime}}}-\Gamma_{\beta^{\prime} \gamma^{\prime}}^{\alpha^{\prime}} a_{\alpha^{\prime}}=\left(\frac{\partial a_{\gamma}}{\partial x^{\beta}}-\Gamma_{\beta \gamma}^{\alpha} a_{\alpha}\right) \frac{\partial x^{\beta}}{\partial x^{\beta^{\prime}}} \frac{\partial x^{\gamma}}{\partial x^{\gamma^{\prime}}}
$$

from above ,we can see that the expression with two freedom index $\beta \gamma$

$$
\frac{\partial a_{\gamma}}{\partial x^{\beta}}-\Gamma_{\beta \gamma}^{\alpha} a_{\alpha}=\left(\frac{\partial}{\partial x^{\beta}} \delta_{\gamma}^{\alpha}-\Gamma_{\beta \gamma}^{\alpha}\right) a_{\alpha}
$$

follow the second order covariant tensor's transformational rules. Then we find Covariant derivative of the covariant tensor field,

$$
\nabla_{\beta} a_{\gamma}=\left(\frac{\partial}{\partial x^{\beta}} \delta_{\gamma}^{\alpha} \mp \Gamma_{\beta \gamma}^{\alpha}\right) a_{\alpha}
$$

where " - " for covariant tensor, " +" for contravariant tensor. This can be generalized to arbitrary high order.

$$
\nabla_{s} T_{i j}^{l k}=\partial_{s} T_{i j}^{l k}-\Gamma_{i s}^{r} T_{r j}^{l k}-\Gamma_{j s}^{r} T_{i r}^{l k}+\Gamma_{r s}^{l} T_{i j}^{r k}+\Gamma_{r s}^{k} T_{i j}^{l r}
$$

The conservation law in the new coordinate system

$$
\left\{\begin{array}{l}
\partial \mu J^{\mu}=0 \\
\partial \mu T^{\mu \nu}=0
\end{array}\right.
$$

transformed into

$$
\begin{aligned}
T_{, \tau}^{\tau \tau}+T_{, x}^{\tau x}+T_{, y}^{\tau y}+T_{, \eta}^{\tau \eta}+\frac{1}{\tau} T^{\tau \tau}+\tau T^{\eta \eta} & =0 \\
T_{, \tau}^{\tau x}+T_{, x}^{x x}+T_{, y}^{x y}+T_{, \eta}^{\eta x}+\frac{1}{\tau} T^{\tau x} & =0 \\
T_{, \tau}^{\tau y}+T_{, x}^{x y}+T_{, y}^{y y}+T_{, \eta}^{\eta y}+\frac{1}{\tau} T^{\tau y} & =0 \\
T_{, \tau}^{\tau \eta}+T_{, x}^{\eta x}+T_{, y}^{\eta y}+T_{, \eta}^{\eta \eta}+\frac{3}{\tau} T^{\tau \eta} & =0 \\
J_{, \tau}^{\tau}+J_{, x}^{x}+J_{y}^{y}+J_{, \eta}^{\eta}+\frac{1}{\tau} J^{\tau} & =0
\end{aligned}
$$

The conservation law in the new coordinate system By making use of the relations $T^{\tau i}=\bar{v}_{i} T^{\tau \tau}+v_{i} P, T^{\eta \eta}=\frac{P}{\tau^{2}}$, the energy-momentum conservation equations turn into

$$
\begin{aligned}
& T_{, \tau}^{\tau \tau}+\left(v_{x} T^{\tau \tau}\right)_{, x}+\left(v_{y} T^{\tau \tau}\right)_{, y}+\left(\frac{v_{\eta}}{\tau} T^{\tau \tau}\right)+\frac{1}{\tau} T^{\tau \tau} \\
&+\left(v_{x} P\right)_{, x}+\left(v_{y} P\right)_{, y}+\left(\frac{v_{\eta}}{\tau} P\right)_{, \eta}+\frac{v_{\eta}^{2}}{\tau}\left(T^{\tau \tau}+P\right)+\frac{P}{\tau}=0 \\
& T_{, \tau}^{\tau x}+\left(v_{x} T^{\tau x}\right)_{, x}+\left(v_{y} T^{\tau x}\right)_{, y}+\left(\frac{v_{\eta}}{\tau} T^{\tau x}\right)_{, \eta}+\frac{1}{\tau} T^{\tau x}+P_{, x}=0 \\
& T_{, \tau}^{\tau y}+\left(v_{x} T^{\tau y}\right)_{, x}+\left(v_{y} T^{\tau y}\right)_{, y}+\left(\frac{v_{\eta}}{\tau} T^{\tau y}\right)_{, \eta}+\frac{1}{\tau} T^{\tau y}+P_{, y}=0 \\
& T_{, \tau}^{\tau \eta}+\left(v_{x} T^{\tau \eta}\right)_{, x}+\left(v_{y} T \tau \eta\right)_{, y}+\left(\frac{v_{\eta}}{\tau} T_{, \eta}^{\tau \eta}+\left(\frac{P}{\tau^{2}}\right)_{, \eta}+\frac{3}{\tau} T^{\tau \eta}\right.=0 \\
& J_{, \tau}^{\tau}+\left(v_{x} J^{\tau}\right)_{, x}+\left(v_{y} J^{\tau}\right)_{, y}+\left(\frac{v_{\eta}}{\tau} J^{\tau}\right)_{, \eta}+\frac{1}{\tau} J^{\tau}=0
\end{aligned}
$$

Evolution

- FCT-SHASTA Algorithm

We can use the SHASTA(SHarp And Smooth Transport Algorithm) algorithm to solve partial differential equations with the form

$$
\partial_{t}(T)+\partial_{i}\left(v_{i} T\right)=S
$$

to solve the hydrodynamic equations.

- Transport stage in SHASTA
- Calculation for Hydrodynamics evolution equations

Transport stage in SHASTA

$$
\partial_{t} \rho+\partial_{x}(v \rho)=0
$$

Figure : The geometric explanation of SHASTA algorithm

Transport stage in SHASTA

If we consider the two sides if the solid trapezoid vary in the same rate, we get

$$
\begin{aligned}
\rho_{p} & =\rho_{j+1}^{0} \delta x /\left[\delta x+\left(v_{j+1}^{1 / 2}-v_{j}^{1 / 2}\right) \delta t\right] \\
\rho_{m} & =\rho_{j}^{0} \delta x\left[\delta x+\left(v_{i+1}^{1 / 2}-v_{j}^{1 / 2}\right) \delta t\right]
\end{aligned}
$$

Transport stage in SHASTA

The residual mass is given by the the blue shadow area,

$$
\begin{aligned}
\Delta m_{r e, j}^{n} & =\left(\rho_{m}+\rho_{q}\right)\left(\delta x / 2-v_{j}^{1 / 2} \delta t\right) \\
& =\delta x\left[\frac{1}{2} Q_{+}^{2}\left(\rho_{j+1}^{n}-\rho_{j}^{n}\right)+Q_{+} \rho_{j}^{n}\right]
\end{aligned}
$$

Transport stage in SHASTA

The another part of the element's mass (in cellj +1) is $\Delta m_{a n, j}^{n}$, we can easily calculate

$$
\begin{gathered}
\Delta m_{a n, j-1}^{n}=\delta x\left[\frac{1}{2} Q_{-}^{2}\left(\rho_{j-1}^{n}-\rho_{j}^{n}\right)+Q_{-} \rho_{j}^{n}\right] \\
Q_{ \pm}=\left(1 / 2 \mp v_{j}^{1 / 2} \delta t / \delta x\right) /\left[1 \pm\left(v_{j \pm 1}^{1 / 2}-v_{j}^{1 / 2}\right) \delta t / \delta x\right]
\end{gathered}
$$

Transport stage in SHASTA

The mass density at grid point j and time step $n+1$ is

$$
\begin{aligned}
\rho_{j}^{n+1} & =\left(\Delta m_{a n, j-1}^{n}+\Delta m_{r e, j}^{n}\right) / \delta x \\
& =\frac{1}{2} Q_{-}^{2}\left(\rho_{j-1}^{n}-\rho_{j}^{n}\right)+\frac{1}{2} Q_{+}^{2}\left(\rho_{j+1}^{n}-\rho_{j}^{n}\right)+\left(Q_{+}+Q_{-}\right) \rho_{j}^{n}
\end{aligned}
$$

Transport stage in SHASTA

If we consider a uniform velocity, the above equation will be simplified to

$$
\rho_{j}^{n+1}=\rho_{j}^{n}-\frac{\varepsilon}{2}\left(\rho_{j+1}^{n}-\rho_{j-1}^{n}\right)+\left(\frac{1}{8}+\frac{\varepsilon^{2}}{2}\right)\left(\rho_{j+1}^{n}-2 \rho_{j}^{n}+\rho_{j-1}^{n}\right)
$$

where $\varepsilon=v \delta t / \delta x$. If $v=0$,

$$
\rho_{j}^{n+1}=\frac{1}{8}\left(\rho_{j+1}^{n}-2 \rho_{j}^{n}+\rho_{j-1}^{n}\right)
$$

Anti-diffusion stage

Now, we can see that the solution is conservative and positivity but has a large zero order diffusion. To correct the diffusion, we used an anti-diffusion form

$$
\bar{\rho}_{j}^{n+1}=\frac{1}{8}\left(\rho_{j+1}^{n+1}-2 \rho_{j}^{n+1}+\rho_{j-1}^{n+1}\right)
$$

but it will destroy the positivity. So the anti-diffusion terms are written in mass flux form

$$
\bar{\rho}_{j}^{n+1}=\rho_{j}^{n+1}-f_{j+1 / 2}^{n+1}+f_{j-1 / 2}^{n+1}
$$

where the mass flux is

$$
f_{j \pm 1 / 2}^{n+1}= \pm \frac{1}{8}\left(\rho_{j \pm 1}^{n+1}-\rho_{j}^{n+1}\right)
$$

Anti-diffusion stage

and the flux is corrected as

$$
f_{j+1 / 2}^{(c) n+1}=\sigma \max \left\{0, \min \left\{\sigma \Delta_{j-1 / 2}, \frac{1}{8} \Delta_{j+1 / 2}, \sigma \Delta_{j+3 / 2}\right\}\right\}
$$

where $\Delta_{j+1 / 2}=\rho_{j+1}^{n+1}-\rho_{j}^{n+1}$ and $\sigma=\operatorname{sgn} \Delta_{j+1 / 2}$.
The final mass density at grid j and time stepn +1 after corrected anti-diffusion stage is

$$
\bar{\rho}_{j}^{n+1}=\rho_{j}^{(c) n+1}-f_{j+1 / 2}^{n+1}+f_{j-1 / 2}^{(c) n+1}
$$

Multi-dimensional algorithm

In this multi-dimensional algorithm the 1D FCT-SHASTA algorithm with time-splitting is used along one direction at a split-time step, while a $x \rightarrow y \rightarrow \eta \rightarrow y \rightarrow x$ rotation is used to extend the FCT-SHASTA algorithm to multi-dimensions and to suppress the numerical eccentricity produced in transverse direction during the hydrodynamic evolution.

Evolution

At first, we will change conservation equations to the form as

$$
\begin{gathered}
\tilde{T}_{, \tau}^{\tau \tau}+\left(v_{x} \tilde{T}^{\tau \tau}\right)_{, x}+\left(v_{y} \tilde{T}^{\tau \tau}\right)_{, y}+\left(v_{\eta}^{\prime} \tilde{T}^{\tau \eta}\right)_{, \eta}=S^{\tau} \\
\tilde{T}_{, \tau}^{\tau x}+\left(v_{x} \tilde{T}^{\tau x}\right)_{, x}+\left(v_{y} \tilde{T}^{\tau x}\right)_{, y}+\left(v_{\eta}^{\prime} \tilde{T}^{\tau x}\right)_{, \eta}=S^{x} \\
\tilde{T}_{, \tau}^{\tau y}+\left(v_{x} \tilde{T}^{\tau y}\right)_{, x}+\left(v_{y} \tilde{T}^{\tau y}\right)_{, y}+\left(v_{\eta}^{\prime} \tilde{T}^{\tau y}\right)_{, \eta}=S^{y} \\
\tilde{T}_{, \tau}^{\tau \eta}+\left(v_{x} \tilde{T}^{\tau \eta}\right)_{, x}+\left(v_{y} \tilde{T}^{\tau \eta}\right)_{, y}+\left(v_{\eta}^{\prime} \tilde{T}^{\tau \eta}\right)_{, \eta}=S^{\eta} \\
\tilde{J}_{, \tau}^{\tau}+\left(v_{x} \tilde{J}^{\tau}\right)_{, x}+\left(v_{y} \tilde{J}^{\tau}\right)_{, y}+\left(v_{\eta}^{\prime} \tilde{J}^{\tau}\right)_{, \eta}=0
\end{gathered}
$$

where the tilde term $\tilde{X}=\tau X, v_{\eta}^{\prime}=v_{\eta} / \tau$, and the source terms are

$$
\left(\begin{array}{c}
S^{\tau} \\
S^{x} \\
S^{y} \\
S^{\eta}
\end{array}\right)=\left(\begin{array}{c}
-\nabla \cdot(\mathbf{v} \tilde{P})-\tau v_{\eta}^{\prime 2}\left(\tilde{T}^{\tau \tau}+\tilde{P}\right)-\tilde{P} / \tau \\
-\tilde{P}_{, x} \\
-\tilde{P}_{, y} \\
-\left(\frac{\tilde{P}}{\tau^{2}}\right)_{, \eta}-\frac{2}{\tau} \tilde{T}^{\tau \eta}
\end{array}\right)
$$

Evolution

Then the numerical method and procedures of a combined FCT-SHASTA and the 2nd order Runge-Kutta algorithm in solving hydrodynamic equations with a simplified conservation as below

$$
\partial_{\tau} \mathscr{T}+\partial_{i}\left(v_{i} \mathscr{T}\right)=S
$$

where $\mathscr{T}:=\tau T^{\tau v}$ denotes one component of the energy-momentum tensor.

Evolution

(1) Calculate source term at time step $n: S=S\left(\tau^{n}, \varepsilon^{n}, v_{i}^{n}, \mathscr{T}^{n}\right)$.
(2) Get $\mathscr{T}^{\prime n+1 / 2}$ by using SHASTA algorithm through $\partial_{\tau} \mathscr{T}+\partial_{i}\left(v_{i} \mathscr{T}\right)=0$ within time step $n+1 / 2$.
(3) Get $\mathscr{T}^{n+1 / 2}=\mathscr{T}^{\prime n+1 / 2}+\frac{1}{2} \Delta \tau S\left(\tau^{n}, \varepsilon^{n}, v_{i}^{n}, \mathscr{T}^{n}\right)$ and use the root-finding method to calculate the energy density and velocity $\varepsilon^{n+1 / 2}, v_{i}^{n+1 / 2}$.
(9) Calculate source term at half-time step $n+1 / 2: S=S\left(\tau^{n+1 / 2}, \varepsilon^{n+1 / 2}, v_{i}^{n+1 / 2}, \mathscr{T}^{n+1 / 2}\right)$.
(3) Get $\mathscr{T}^{\prime n+1}$ by using SHASTA algorithm through $\partial_{\tau} \mathscr{T}+\partial_{i}\left(v_{i} \mathscr{T}\right)=0$ with $v_{i}^{n+1 / 2}$
(6) Get $\mathscr{T}^{n+1}=\mathscr{T}^{\prime n+1}+\frac{1}{2} \Delta \tau S\left(\tau^{n+1 / 2}, \varepsilon^{n+1 / 2}, v_{i}^{n+1 / 2}, \mathscr{T}^{n+1 / 2}\right)$ and use the root-finding method to calculate the energy density and velocity $\varepsilon^{n+1}, v_{i}^{n+1}$.

Root-finding

The energy density is determined from $T^{\tau v}$ through a root finding method by iterating the equation

$$
\varepsilon=T^{\tau \tau}-\frac{M^{2}}{T^{\tau \tau}+P(\varepsilon)}
$$

with the iteration value of ε for the iteration is approximated by $\varepsilon=T^{\tau \tau}$. Where $M^{2}=\left(T^{\tau \perp}\right)^{2}+\left(\tau T^{\tau \eta}\right)^{2}$. And the flow velocity is given by

$$
\begin{aligned}
\vec{v}_{\perp} & =\vec{T}^{\tau \perp} /\left[T^{\tau \tau}+P(\varepsilon)\right] \\
v_{\eta} & =\tau T^{\tau \eta} /\left[T^{\tau \tau}+P(\varepsilon)\right]
\end{aligned}
$$

תודה
 Dankie Gracias
 Спасибо
 Köszönjük Terima kasih Grazie Dziękujemy Dėkojame Ďakujeme Vielen Dank Paldies Kiitos Täname teid 谢谢 Thank You感謝您 Obrigado Tessekkür Ederiz $\Sigma a c ̧$ Euxapıoтoú μ ขว 감사합니다
 Bedankt Děkujeme vám ありがとうございます
 Tack

