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Introduction

In an ultra relativistic heavy ion collision, partons produced from hard
collision processes travel through a dense matter previously predicted as
Quark-Gluon Plasma (QGP) and losses energy in the surrounding
medium. Although collisional energy loss were predicted to be moderate
(dEcon/dx < 1 GeV/fm) 1 | radiative energy loss were expected to be
significantly large (dE,.q/dx > few GeV/fm) 2 This radiative energy loss
phenomena is called " Jet Quenching”, and it is one of the signatures for
QGP production in RHI-Collisions observed in RHIC(BNL) and
LHC(CERN).

IM.H.Thoma and M. Gyulassy, Nucl. Phys. B 351 (1991) 491 ‘/@\‘
2J.F. Gunion and G. Bertsch, Phys. Rev. D 25 (1982) 746



Introduction

Jet energy loss schemes available in the market 3:

e Modeling of medium
e Static scattering centers (BDMPS, Zakharov, GLV, ASW)
e Thermally equilibrated, perturbative medium (AMY)
e Nuclear medium with short correlation length (Higher Twist)
e Resummation schemes
e Sum over all possible soft interactions (BDMPS, AMY)
e Path integral of hard parton propagation (Zakharov, ASW)
e Opacity expansion (GLV)
e Evolution scheme (multiple emissions)

e Poisson ansatz(BDMPS, GLV, ASW)
e Rate equations (AMY)
e Modified DGLAP equations (Higher Twist)
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Basic idea (radiative energy loss)

Radiative energy loss is given as sum over all radiated gluon energy *

AE 4= /dw%w 0(E — w) (1)

The gluon number distribution is proportional to the phase space integral
on the radiation amplitude squared

dN
— Z IR raal® (2)
d2k | dydw " dr

color

Where it can be extracted from the scattering amplitude of every diagram

Mrad = Mela i Rrad (3)

“photon radiation is ignored since QED coupling is much less giving rise to ‘@\‘
negligible cross-section. B



Gyulassy, Lévai, Vitev model

One begins with the Static Color Screening Yukawa Potential from the
GW 5 ¢ model:

Ao

Vi = 27T5(q2)v(q_;1)eiiq}x; Tan(R) ® Tan(n), V(qn) = —2, 5 (4)
an” + 1
For small transverse momentum transfer, the elastic cross-section
between the jet and the target parton is:
doe _ CrGo(T) |v(qL)? (5)
d?q, da (2m)?
Where the color bookkeeping techniques are described by:
Tr(Ta(R) Tb(R)) = 5abCRDR/DA (6)
Dn = N2-1 (7)
Tr(Ta()To(j)) = 06ap0;;Ca(i)D;i/Da (8)
Tr(Ts(R)) = © 9)
5M. Gyulassy, X. N. Wang, Nucl. Phys. B 420 583 (1994) ‘é\\ ooo

6X. N. Wang, M. Gyulassy, M. Pliimer, Phys. Rev. D 51 3436 (1995)



Feynman rules (example)

From the given potential above, one has the Hamiltonian:

/dt/::/dt(l—V)

[ Zvax, ()01 (%, ) T(R)D(£)(%. 1) (10)

~ e d e g
where D(t) = i0y, Ads B = A(9:B) — (0:A)B. Consider a simple

scattering diagram:
-
/ dtH,(t)} p>
-7

iM = <p'
= (=i)(Ep + Ey) x a(p")u(p)
x /d4xz V(R—%)- P =PRT (Yo T,(R) (11)
’ ‘i;‘ooo
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Feynman rules (cont.)

Then one has:

M= (—')(E + Ey) x a(p')u(p)
x(2m)o(Ep — p)ZVJ e TNTL () ® To(R) (12)

Separating the potential and the Dirac spinors, one can see that the
Feynman rule for scattering vertex is given as (—i)(Ep, + Epr).

One can derive the following Feynman rules from the given potential
accordingly:

Quark scattering vertex = —i(2p° — q°) (13)
Quark propagator = i/(p? + ie) (14)
Gluon propagator = —igh”/(k® + ie) (15)

Emission vertex = igs(2p+ k)" €, T (16)



Assumptions and Approximations

Targets are distributed with density:

o 0(Az) _ 2y

ﬁ(zla o 7Zn) = L (N) e L (17)
=1 ¢
The opacity defined by:
_ L Nog
n= X = Al (18)

Energy of jet is high compare to potential screening scale:
ET=~2E>u (19)

distance between source and scattering center are larger than
interaction range:

1
zZi— 29 > — (20)
1
One defines the jet with momentum p:
Mo = ie?™ J(p) x 1 (21) @
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Light-cone kinematics

One can define the following light-cone coordinates:

- E2 )
k = 2w,fJ‘,kl
2w
[ kLeel
E(k) = 0) Lw LaEL]
[ éL_EL2 ~ r
p = 2(E—w),(2(Ew)) ,(QJ__kJ_)2
K2 w -
Q = 0,2:(E_w+1)7@_]

and their corresponding dot products. We can use the assumption:
(E > w > Q) to simplify our calculation.

(23)

(24)

(25)



Gluon tree matrices

It is best to work out the matrices below to simplify the calculations
follow:

M(kia) = Tkiaq)-ey(k)
N = @p+k—aq)al*(kiq)
A1 = rl(igsta)Tb(l)

= —2g[2E€| (ki — Gi1) +w(€L - Giu)lle, b] Th(1)

Fr(kiqiiq2) = T%(k — q2; q1)guu ™7 (ki q2) - ey (k)
M = @p+k—aq—q)al(kiq1;q2)
Ao = r12(igsta)Tal(1)Taz (2)

= —igsAw[2EE| - (KL — 11 — Go1) +wéL - (Gr1 +2G21)]
x[[c, a2], a1] T, (1) T, (2)

==y
@/‘ ooo
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Diagrammatic approach

dNoc/Tr|t0~R(°)+t1 RO 42RO P (26)

da
opacity order = n/2, one has the following opacity expansions:

n/2
where t7 oc T7, with Tr(T2%) =0, and Tr(Teve") = (M) . For

dv©® / RO (27)
dv® o /Tr|R(0) LA RW 2. R(z)lz
G(T)d
= a0 (%) x [ TRD? + 2Re(ROTR)] (28)
A

dv® / RO 4+ R 4 2. RO 4 2. RO 4. RWP2

(1) G(T)dr\2 )2 W)t 12(3) ©)t 12 (4)
aN® 4 (=) ) [ TR 4 2Re(RUTRE + ROTRO)] - (29)
A



Self-Quenching

The scattering matrix:

MO, = iU(p+ k) PHI™(ig)(2p + k) iA(p + K)c
- E—wé -k
—_ i(p+k)xo(_ 1L J_
= iJ(p+ ke °(—2g5) 5 Z
MRS, (30)
The radiation amplitude squared:
1 (0) 2
d ZZ|RY«3C’ = TRTr|Rrad|
E-w\®1
= 16brwasCg <E> k (3]_)

/@‘ 0o
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Absorption (optional)

In the QGP heat bath, the jet parton can either emit or absorb a gluon,
one will take into account the Bose enhancement and absorption factor
N(|k|) = (el*/T —1)~% in the phase space integration. *

db — d3|/?|i 1+ N(|k|) :if k° = |k| for emission (32)
—(2m)3 20k N(|K]) - if k% = |k| for absorption
1
dN = 7 TrIRO|2do (33)
Then:
dv®  2Cga, / diki| [ E—w\?
dydw T ko | E

x| (1 NOIRIY)S(w — [K]) + NOK DO + [KD)] - (34)

@‘ 0o

14 /56

"E. Wang, X.N. Wang, Phys. Rev. Lett. 87, 142301 (2001)



Divergence and virtual correction
Virtual processes:

dN®  20.Ck / dlk. |

Then, the gluon spectrum is:

0 0
dN©) dNS + g
dydw dydw

_ 2asCR M E—w)? w1k
- 2o /k| [( £ (i - R
<E2_| 2) (1+2M)5(w) (36)

/@/\‘ oo
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Energy Loss

Using the gluon number spectrum, one can then calculate the energy loss:

dN©)
dydw

AEY) = / dydw wO(E — w) (37)

Note that | dwd(w)w = 0, which means that the virtual gluon does not
contribute to the total energy loss. Then:

AEQ) = 20‘5CRE/ dlk.] dx[(1 — x)20(1 — x)
Q |k |
—4xNO(1 — x) — (1 + x)°NO(x — 1)] (38)

@‘ 0o
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Energy loss (Analysis)

We can write the energy loss in three terms:

0 0)a 0 0
Ay = DEgy" — AEY — AELYS (39)

rad

Note that AEr(fc)a is the energy loss from emission at T = 0. AE(C) and

AE(J are the energy absorption at finite temperature. looking at the

ratio of AE y /AEr(fd = 12T /E, which means that if E < 12T,
antl—self—quenchlng happens. E.g. at SPS(T = 150MeV), jet with

E < 1.8GeV will absorb energy instead of quenching. AESBC is negligible
for E > T and becomes significant when E < T. However, the zeroth
order self-quenching calculations over-estimates the energy loss at
high-energy collisions and thus will not be use in the future, but

demonstrates how to systematically calculate jet-quenching.

@‘ ooo
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First order Feynman diagrams

Single direct scattering:

Mioo k. Mo é{k’c Mo,

@z“éff PR o & @rin

z P E z p K ol
k,c

qi.a; qua qua

Double Born scattering (contact limit):

ks <
€ Mooy

Mz 00 &é M550
o & 2 g

o
> @

LI

No contribution:




Summation at finite temperature

When the jet parton rescatter off the target parton with static potential,
the g integration should be replaced by the summation at finite
temperature field theory. From quantum field theory to the finite
temperature, the replacement rule is the following 8:

g — iv,=i27nT, n=0,£1,42--. (40)
dgo d*G R / d*q
= = 0T > (41)
3 3
/(27T) (2n) ) (2m)
1
27‘1’5((7? + qS) — ﬁévnl+vn2,0 (42)
1 1
A(q) = — 43
((7) (72 _ ,772 (iVV,)z _ iiQ _ ,172 ( )
However, one can show that at static potential case the above
replacement is not needed at finite temperature field theory for the
calculation of the rescattering amplitude. i
‘i@)ooo

8C.W. Bernard PRD 9 (1974) 3312
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Single Direct Rescattering - Mg

The scattering amplitude:

d*q . i o) -
M = [ Gise + k= et ()D(2p — 1)
X V(q)e ™ (igsc)(2p + k — 2q1)'"e,,
xiB(p— q)ib(p+k — q1) (44



Diagram numbering

Quantum cascading Feynman diagrams can be very complex and requires
a systematic way of numbering.

Mn,m,l

e 1 - number of scattering centres(potentials).
e m - gluon radiation position(after the m® scattering center).
e | - gluon, potential interaction structure.

where

1~
/:27(201-21 1
J:

/@‘ oo
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Numerator Algebra

For calculations under the color-screening potential of the SU(N) group,
one requires necessary techniques for color factor manipulation as given
below:

[a,b] = if?bcc (45)

Tr(ab) = C(r)0°* = Crdr (46)

aa = Cg-1 (47)

Tr(a) = 0 (48)

With these identities, one can derive the following:

ajcca; = C% -1 (49)

acla,c] = —L1CrCa-1 (50)

[C7 81] cay = —%CRCA -1 (51)

[Cv al] [31, C] = CrCa-1 (52)



Residue Theorem

Whenever we perform integration on a propagator, we need to find
singularities on the denominator and use residue integration to get rid of
the poles.

%f(z)dz = 27TI'Z Res,—;, f(z)

C

j=1
We have the following:
Ap—qi) = [(q1z — q1)(qrz — @)
Alp+k—q) = [(qz— @&)(q. — da)] "
Ak—q) = [(q1z— G)(q1z — )] !
Where:
CI_1 = 2(E — w) —+ ie s CTQ = —je (53)
C73 =2F + iE 5 674 = —Wwp — iE (54)

G =2w—wyt+ic , o= —wytwitic (5% o
@Yoo



Single Direct Rescattering(cont.) - Mg
Substituting it back to the scattering amplitude, one has:
MY i kel [ LAL g, 5
rad  — ! (P )e (_l) (277)2 e
B E-wé -k
xV(o,q11)(28s) £ L-»Q =
ki
x [el(@=2) _1]T, ajc
Thus, the radiation amplitude for Mqo:
E—wél ki, .
Rrad - ( 2 gs) = [eMO(Z1 o) — 1]31C

E k2



Single Direct Rescattering - Mg

Similar to the the above calculation, the radiation amplitude for Mg is
given as:
)b E—w gl . kL

Rgd = (2igs) 5 P elwo(z1=20) cq) (58)
1

/‘ 0o



Single Direct Rescattering - Mp1

M, 0,1
ZO V4 Zl
P
& T TN k.c

q1,21
And Mg, is given as:

Efw[2E€l'(/?l —q11) — we€L - Gil]

E 2E(k; — G11)?
x elwo(z=2) (1 _ g=iwz=2))[c 4] (59)
‘i;‘ooo
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Single Direct Rescattering

We now add the total radiation amplitude for single direct rescattering:

RGY = RO +RUP+RUS
E— . Lo
= (Qigs) w [gl -H ajc+é€ - Blelwo(z1fzo)[c’ 31]
181 - Geloe@==a)[c 4] (60)
Where we have:
- Kk
H = = (61)
ki
- K —@
(ki —@11)?
B = H-G (63)



Double Born "virtual”’ interaction

The double Born "virtual” interaction corresponds to the contact-limit of
double direct rescattering. Double Born scattering (contact limit):

@zo z 7 7 Z

Y £ p g p
”Q’mm@'ammm g%mf‘ ﬂgam’mm\
k.c k,c




Double Born "virtual” interaction(cont.)

The radiation amplitude for double Born interactions is given as:

: E-w iwo(z1—20) =
RUP = (2g)c (E ) o=l
L L Ca s
{_CR;—CAHe—'WO(Zl—ZO) + %Bl + ;Cle—'wl(zl—ZO)(%Ar)

Note that the following diagrams gives no contribution under the
contact-limit:

r/: - '\
@/‘ ooo
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Energy loss - First order

We again perform phase space integration on the radiation amplitude to
get the gluon number distribution for self-quenching, single direct
rescattering and double Born interaction. One will see that the gluon
spectrum is infrared divergent, we can introduce the virtual gluon
exchange processes to cancel the divergences, but for the calculation of
energy loss, the contribution for virtual gluons are not included. One will
then arrive at the following energy loss expression:

2as CRCAG(T) N d2g; .
Al = 2 TREAZRT) —/d / v3(0, G
rad T dA AL le(zl) (27r)2 ( 1q1l)

x/d@um(_zél-cj)/%(xE)
x {(1 — x)2Re(1 — e™11710)[1 + N](1 — x)

~(1+ x)?Re(1 — el*1250) NO(1 + X)} (65)

@‘ ooo
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Energy loss - First order(cont.)

We can separate it in three terms as before:

AEM = AEW2 _ AEMb _ AEQ)e (66)
where
4o CR L
l)a __ s 2
AEM? = 2 Neff)TgE
1 |I:L|ma>< |C7L‘max 2
x/ dx(l—x)z/ d|/u|/ dlgul =73 9|
0 KL | min (G +p2)?
g cosvkL] - 14, )L (67
0 16E2x2(1 — x)? + (ko] — |gu)*L?
with

(Ikel = 1G))* = Ikl = 2lke]|L] cosp + |G f?

/@/\‘ oo
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Energy loss - First order(cont.)

4asC ‘K R g 17, 12
1)b s R 2 Ik Imax [G1 Imax |, _. q
ae® = eff*E/ - d\kl|/ dldy | ————>
1K1 I min 0 (@1 + n?)
y /zw dwcoswum — |, 12
0 eBPE _ 1
y (1+x)7? B (1—x)?2 )
16E2x2(1+ x)2 + (1K | — 1§ D2 16E2:3(1 — x)2 + (1K | — 1§, )12
4asC 2
aeMe s R szﬁ /oc ‘L‘max /‘0i|max a7, | 17 12
1K1 | min (@1 +n?)?
X/zw o (1+x)? cos (k) | — 1, L2 .
0 BE 1 | 16E2x2(1 + x)2 + (IK | — 1§, )42

Note that we began with E > w assumption to take absorption into
account. For pure emission, as in the GLV(2001) paper, AE(M)? is suffice.




Numerical Results

AE/n

—— GLV(AE®)
—— GLV(AE®™)

0.14

10
E/n

%/OO
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at fixed temperature T = 500MeV for opacity L/A\; = 3, as = 0.3
pu=05GeV, \;, =5GeV 1.



Recursive approach (Reaction operator)

e What happens when we have n scattering centres?

e How do we calculate upto n'" order opacity expansion?

We begin by defining the following:
Q=) a=(qG+gir1++dn1+0n) (70)
k=i

For simplification, absorption is not considered in this method. i.e.
E>»w.

==y
@/‘ ooo
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Sequential Multiple Scattering

Consider a quark jet undergoing n scatterings, the amplitude:

My = i@ sp- Q)] [

T (-2~ )

(
L 0 7.\ el4i X
G Qg e rola)V(d)e™ ™ x Col(0) (71)
where the color factor Col(0) is:
Col(0) = apan_1---a1T(an)T(an_1)--- T(a1) (72)

We now proceed to work on the propagator.

/@/\‘ oo
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Propagator Integration (Residue Theorem)

dq;. 1 )
12 = o V(g;)e i) 73
- [ oY@ (73)
Using the residue theorem and assume small momentum transfer, we
have:

Gz =2E+ic , 10 = %V(o, ) (74)

We then have:

] ) n ) d?q; .
0 ip-xo ! = 1q9i 1 (X X0
M, = IJ(p)ep |i|(_l)/ ( )2 V(O, g )e G ( )CO/(O) (75)

==y
@/‘ ooo
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Induced Gluon Emission

Consider a gluon has been radiated between the g; and gj4; potential.

The amplitude:

iJ(p — Q1 + k)elP=Qtk)xo

d4q;‘ . 0 i N SN\ igiex;
(2ﬂ)4(*’)2p m%ﬁ(m)v(qi)e "

g1, .
) (_) 0

1 .
@nt P ) i e P)

X
(p— Q1+ k)2 +ie

d 27r5(qj0+1)V(@+1)efQJ+1'Xj+1:|

d*q; . i .
l_[ / (2m)® (—I)2p0 (p— @) +ic 27r5(q?)V(q,—)e ! :| (76)

/@/\‘ oo
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Propagator Integration

Use residue theorem to evaluate the denominators:
Qiz = —wo — Qiy1,2 — i (77)

We can use partial fraction to separate the denominators:

i i 1 i i
2 ~ — —
(p— Qu)2+ic(p— Q1 +k)+ic k-p [(p = Qir1)2+ie  (p— Qi1+ k) + is}

(78)
Which gives:
A(p— Qi+ k)15;A(p — Qi)j+1n — A(p — Qi + K)15j+1A(p — Qi)j+2-5n
(79)
Then, the integrals:
j10 — =i it — Il B} 80
2 % 2FE—wy 2E (80)



Phase factor analysis
From experience:

n
H e—isz(Zf—Zo) — e—ilhz(21—20)e—iqzz(zz—zo) . e—iqnz(Zn—Zo) (81)
i=1

Then, we will use the following lemma ° to rewrite the phase factor:
> aizi—2)=Y_ Qlz —z-1) (82)
i=1 j=1

Substitute in the residues, and quite a lot of cancellation, the phase
factor for the two propagators are given as:

eiwo(ZjJrl*ZO) _ e/‘*’O(ZJ*ZO) (83)

/‘ oo
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Induced Gluon Emission(cont.)

Taking the initial phase into account, we have the overall phase factor:
elwozinn _ glwoZ) (84)
The color matrix is still a simple expression:
Col(l)=an---ajr1caj---ail,, - Ty (85)

Substituting everything in, we have:

n

i . ip-x . d’g; S\ _—igiL b
My = e 1D [ ot viae s
i=1

20.€ E . i
KB [eion - 6] Col(1) (89)
1



Gluon radiation with Quantum Cascading

We now consider the full diagram where the jet and the radiated gluon
both undergoes multiple rescattering. We need an effective parameter to
correctly describe the scattering centres. We define the following:

6::(0.1:0""7Um:0a0-m+17"'70'”) (87)

Where o; takes the value of 0 if the potential is interacting on the jet,
and the value 1 if the potential is interacting on the radiated gluon®®.
and Assume the gluon is radiated after the m™ and before the (m + 1)t
potential. Thus, the value of ¢g; from i =1toi=mis 0.

103 binary representation

/‘ 0o
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Propagator Integration

We now separate the diagram into two parts, jet line and the gluon line.
Since we did the quark propagator analysis before, we will focus here the

gluon propagator of the j potential:

n

—iA(k — q; — Z o'q;)

i=j+1
Rewriting the denominator and find the pole:

R -G

and the residue:

1 1
Res = — ~—
Kkt + k— + (ki—0'GiL—gj1)? kt




Gluon momentum analysis

We begin by writing out the momentum part (without the color factor),
i.e. [, and notice the pattern when considering multiple potentials.

2P+ k —qm)ale = 4EEL - [KL — Gmi]+ O(K) (91)
P+ k= Gm— G)al®, = 8EweL - [KL — Gms — Gur] + O(R2) (92)
(@p+k—G —dm—dn)aloy = 16EW°EL - [KL — G — Gmi — Gor] + O(KL) (93)

We can generalize this expression to n, potentials:

Ng
(2,0 + k — Z qi)ar%n- ,Ng
i=1

= 2EH(kN)TIEL (KL - Y Gu) + O(R?) (94)

Note that this is simplified under the small momentum transfer
approximation.

/@‘ oo

43 /56



Phase factor Analysis

The initial charge phase factor is given as:

eiwgzo — eiwézg . ei >rlio'al (95)

e = 2
where w) = % Phase factor for quark propagator:

eiwézo [eiwé(zj+1—20) _ eiwé(zj-—zl))]

eizr(ke =30, 0'Gi)? /2w _ gizi(ki =30, 0'Gi1)? /2w (96)

where the gluon is radiated after the j* and before the (j + 1) potential.

/@/\‘ oo
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Phase factor Analysis(cont.)

The gluon cascade phase factor is given as:

e (520

H e iz(z—20) _ o374 iol[(kL—0'Gi1 2~ (kL —o' G — g1 )15 (97)

j=1

Notice that if we isolate the zy part out of this exponential, it cancels
with the second term from the initial charge phase factor. Thus, we only
have the z; part left. We now have the total phase factor:

[efzmﬂ(h—z,ﬂzl TG /20 _ gizm(KL—Y0 o' L) /2w
n . — —
> H i zil(kL =320 oG ) = (kL =300, o' —Gi0)?) /2w (98)

i=1

/@/\‘ oo
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Colour Factor Analysis

We label the color factor as follows:
e 3; to a,, for the potentials before the radiated gluon.
® ¢ to ¢,, for the potentials that interacts with the gluon.

e by to by mp, for the potentials that did not interact with the gluon
after ap,.

colour factor for gluon cascade:
f'd"gC”gcfd"g71C"g71d”g - fd2c2d3 fd1C1d2 ta = (—i)ng[. .. [C, Cng]7 Cng—l]7 cee Cl]

(99)
Therefore, the total color factor:

CO/(2) = (i)ngbn_m_ng . e bl[ .. [C, Cng]7 s, Cl]am e al Ta,, e T31
(100)

/‘ oo
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Gluon radiation with Quantum Cascading
We now include the rest of the factors:
e gluon propagator (1/k™*)"
e cascade vertices 2E*(k*)e—1e (kL — 5" G:1)

e gluon radiation couplmg /gSE(k+) (k= )
e partial fraction factor 7"”‘: !
k P (kL Z, 1GiL)?

Counting all the / and include everything, we have:

n

io= e [ [ S ey g.)

i=1 (27T)2
— !/
><2g5 6L\/2/(UTO {eizm“wé N eizmw[/)}
wo
y H i 2ilwg i1 —wo ] Col(2) (101)

i—1 _
/@/\‘ oo
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Recursive Analysis

We then analyse what happens when we add potential under different
situations. Some of the parameters that needs to be define are:
e we define the following quantities to simplify the expression:
) o (EL—ij:l Gij1)
iy im) (EL_Zj’ll El'iji)2
Bi=H—=Ci, Bliy oo imin, - sim) = i sim) — Sl sjm)
e define D, as the operator that adds a direct interaction on diagram
with n — 1 potentials.

e define V, as the operator that adds a virtual interaction on diagram
with n — 1 potentials.

e the position of the last potential that interacts with the quark line
before the nt" potential is denoted as zf.

o define the amplitude of the diagram with n — 1 potentials as
.A1..‘,'n71(x, k7 C).

@‘ ooo
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Interaction added on quark line

e gluon radiate before z:

- phase: no change.

- color: Col(A%) — a,Col(A%)
e gluon radiate between zr and z,:

- phase: —elwozr _y giwozn _ gitozs

- color: c(af---a1) — apc(ar---a1)
e gluon radiate after z,:

- phase: —g'“on

- color: ca,(af---a1)

Then, the amplitude when adding a direct interaction on quark line
becomes: _
AW = 2, A+ e[, a,](ar - - a1) (102)

/@‘ 0o
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Interaction added on gluon line

e gluon radiate before z: ' ' _
- phase: phase(k| — qn1,0;)xe/(Wowm)zn(giwmzmis _ giwmzm)
- color: A%(c) — A%|c, a,]

e gluon radiate between zr and z, that interacts with g,:
_ phase: 7eiwoz,f — eiwoz,, o ei(ngfw,,)zneiw,,Zf

- color: c(af---a1) — [c,anlar--- a1

We then have the amplitude when adding a direct interaction on gluon
line, with some simplification with the previous result:

A = g, A + e[, a,] A’ (103)
We then have (1 comes from unitarity):

DoA(kL,€) = anA(ky,c)+ etowna A(K — G, [c, an))
—(1/2)M) B e™%[c, a,] Tei(A) (104

( \o
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Contact Interaction

With the same analysis as above, we have the A operator:

~ N 1 N
V,,.A(kJ_, C) = —E(CR + CA)A(kJ_, C)
_ei(wo_w")znan-A(EJ_ - C_fnJ_v [C, an])
1 .
—(—E)NV%Bne’WOZ"cTe/(A) (105)

We can simplify these two equations by defining S and B. Then:

énAh,"' 7in—1(E’ C) = (an + §n + én) (106)
~ N 1 A A
Vn‘Ah,"' ain—l(k7 C) = _E(CA + CR) — ap5, — anB,
~ 1
= —a,D,— E(CA - CR) (107)

/@‘ oo
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Reaction Operator

After all the derivations, we now arrive at the radiation probability:
P, = A R L (108)
where the reaction operator is given as:
R, = DiDy+ V,+Vf
= (0 +B))'(5+ By) — Ca (109)



Recursive approach (Gluon spectrum)

The gluon radiation probability:

n n - . - .
P, = —2CrCyjRe>_ [H (eMLb — 1)] B, . eMiL Bg=iwoz

i=1 | j=it+1

A(e07 — ¢w0%0) (110)

i—1
x |:H(ei(w07wm)zmefqu~b _ 1)

m=1

Which gives the gluon number distribution as:

dn(™ Cras 1 ( L )
X — = — | —
dxd?k 72l \ A (1)

/ U (o (i((l)) ) )~ P (a))

x <—2€<1,---,n>~ Bims1,-oe n)(m, -+ )

m=1
X [cos (i Azk) — cos (iw )Azk>:|> (111)
K 1
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Energy loss as a function of opacity

100.00
A
O----0 AE™?
10.00 ¢ Ak AR

N
S ook
< -
010 L LHC: E, /= 1000
RHIC: E, /= 100
SPS: E,/u=10
0.01 :
1 2 3 4 5 6
L/,
A generalized induced energy loss equation: 1!
; Cras L2112 E
AE(md) = WE;T’U |Og — (112)
¢ . =Y
@Yoo

M. Gyulassy, P. Lévai, I. Vitev, Nucl. Phys. B 594 (2001) 371
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Summary

The GLV model was explained and a set of assumptions and
approximations were given, with a set of Feynman rules and
light-cone kinematics.

The graphical approach was described.
The reaction operator approach was described.

during the derivation, we take note that absorption can be taken
into account by including finite temperature field theory parameters,
while introducing the temperature dependence to the equation.

necessary high energy limit was made during the derivation to
simplify the expression.

@‘ ooo
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Thank‘ you!

i *

Here's a potato.
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