

Institute of High Energy Physics Chinese Academy of Sciences

Study on ATLAS alternative Higgs productions (VBF H->bb & VBF H->WW)

Zhijun Liang (梁志均)

(IHEP, Chinese Academy of Science)

中國科學院為能物現研究所 Institute of High Energy Physics

Higgs-bottom Yukawa couplings

Higgs decays at m_H=125GeV

- H→bb has the largest branching ratio (~58%)
- Evidence of fermionic decays in Run 1:
- $H \rightarrow bb: 2.6\sigma$ (expected 3.7 σ)

How to Identify b quark jets in ATLAS

- Two ways to Identify b jets
 - impact parameters
 - secondary vertex from B decay

Institute of High Energy Physics

ATLAS Detector upgrade from run 1 to run 2

• IBL = New Insertable pixel B-Layer at R=33 mm

B tagging performance Improvement after upgrade

• Light jet rejection power increases by a factor of 10

中國科學院為能物理研究所 Institute of High Energy Biysics

VBF H(bb) γ final state

- Search for H->bb in VBF events containing a central photon
- Advantages of requiring a photon
 - extra handle for trigger
 - suppresses QCD background
 - Sensitive to WWH VBF production
 - not sensitive to ZZH VBF

ATLAS-CONF-2016-063

VBF H(bb) γ event selection

ATLAS-CONF-2016-063

- L1 trigger: single photon (pT > 25 GeV)
- High level trigger: 4 jets pT > 35 GeV, mjj> 700 GeV
- Offline Selection:
 - Tight ID photon, pT > 30 GeV
 - 4 jets with pT> 40 GeV
 - 2 central(|n|<2.5) b-tagged jets
 - pT(bb)>80GeV
 - mjj> 800 GeV
- BDT discriminant

 $\Delta R(jet, \gamma), m_{jj}, \Delta \eta_{jj}, H_T^{soft}$, jet width, γ centrality, $p_T^{balance}$

- Define 3 regions with different S/B
- Fit m_{bb} in 3 regions

中國科學院為能物現研究所 Institute of High Energy Physics

VBF H(bb)y MVA Input varialbe: photon centrality

 $y_1 + y_2$

jet 2

Central region

$$centrality(\gamma) = \left| \frac{y_{\gamma} - \frac{y_{j_1} + y_{j_2}}{2}}{y_{j_1} - y_{j_2}} \right|$$

B jet energy corrections

- Using ATLAS default jet energy calibrations
 - Higgs mass resolution is not great
 - Asymmetry in mass, long tail in low mass region
- Dedicated B jet calibration
 - Muon-in-jets corrections
 - Kinematic likelihood

VBF H(bb) γ signal extraction

ATLAS-CONF-2016-063

Non-resonant background (γ+jets) estimated with 2nd order polynomial fit.

Statistics uncertainty in mbb sideband region dominated

Result	$H(\rightarrow b\bar{b})+\gamma jj$	$Z(\to b\bar{b})+\gamma jj$
Expected significance	0.4	1.3
Expected <i>p</i> -value	0.4	0.1
Observed <i>p</i> -value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	$1.8 \begin{array}{c} +0.7 \\ -0.5 \end{array}$
Observed limit	4.0	2.0
Observed signal strength μ	-3.9 $^{+2.8}_{-2.7}$	0.3 ±0.8

VBF H (bb) γ production cross section limit

Expected 95% CL limit:

 $6.0^{+2.3}_{-1.7}$

Observed 95% CL limit:

4×(σ×BR)SM

中國科學院為能物現研究所 Institute of High Energy Poissics

Latest results on H(bb)

- Combined signal strength with 36 fb-1 at \sqrt{s} = 13 TeV
 - VH(bb): 3.5 σ observed significance (3.0 σ expected)
 - Systematics dominated, very hard to reach 5 σ with run 2 data
 - VBF (bb) & VBF H(bb) γ : 1.8 σ observed significance (0.8 σ expected)
 - Statistics dominated, will catch up with VH
 - Combination of VBF and VH are more likely to reach 5 σ

Institute of High Energy Physics Chinese Academy of Sciences

VBF H->WW

C. Bertella

(IHEP, Chinese Academy of Science)

H→WW*→lvlv@RunI

Event Selection

Main backgrounds:

- ggF estimated with MC simulation
- WW: estimated with MC simulation
- ▶ Top and Z→ττ: shape form MC simulation, NF estimated with data
- W+jets: data-driven from events with one lepton satisfying only loose but failing tight ID criteria; fake factors measured in a di-jet sample

Institute of Hign Energy 12 nysics

MVA Analysis

- The analysis uses a BDT to classify an event as signal- or background-like:
 - Signal: VBF
 - Bkg: Top,VV, Z+jets and ggF
- The training is performed after N_{b-jet}=0
- It uses information related to the production and decay topology
 - \rightarrow Leptons: $m_{ll}, \Delta \phi_{ll}, m_T$
 - Jets: m_{jj} , Δy_{jj}
 - Jets/Leptons: $\eta_{centrality}$, $\sum M_{lj}$, p_T^{tot}

C. Bertella

BDT Modelling

- BDT modelling has been checked in the Top and Z→ττ CRs and SR
 - Good data/MC region in all the regions
- Important shape different between signal and background in SR

+ Data

Top

ww

H_{ggF} -- H_{VBF} × 10

0.2

0

W+jets

ATLAS Preliminary

100 s = 13 TeV, 5.8 fb⁻¹

 $H \rightarrow WW \rightarrow e\mu + \mu e$

-0.8 -0.6 -0.4 -0.2

🚧 SM (sys)

Other VV

Other Higgs

Z+jets

0.6

0.8

BDT score

0.4

120r

80

60

40

20

Events / 0.3

VBF H->WW result

- observed (expected) significance
 - 1.9 σ (1.2 σ) with 5.8 fb⁻¹ data
- Statistics dominated
 - ~60% stat.
 - ~30% syst.

Source	$\Delta \mu_{\mathrm{VBF}}/\mu_{\mathrm{VBF}}$ [%]
Statistical	+60 / -50
Fake factor, sample composition	+18 / -15
MC statistical	± 15
VBF generator	+14 / -5
WW generator	+11 / -7
QCD scale for ggF signal for $N_{\rm jet} \geq 3$	+8 / -7
Jet energy resolution	+8 / -7
b-tagging	+8 / -6
Pile-up	+8 / -6
QCD scale for ggF signal for $N_{\rm jet} \ge 2$	± 6
JES flavour composition	+6 / -4
WW renormalisation scale	± 5
Total systematic	+33 / -26
lotal uncertainty	+70 / -50

• The search for the Higgs decays to b-quarks in ALTAS

- VBF H(bb) γ : first ATLAS result (ever)
- VH(bb) : observed (expected) significance: 3.5 σ (3.0 σ)
- Combination of VBF and VH is likely to reach 5 σ with full run 2 data

• VBF H(WW)

- observed (expected) significance 1.9σ (1.2 σ) with 5.8 fb⁻¹ data
- Likely to reach $3\sigma \sim 4\sigma$ with full run 2 data

Introduction Barbara Mele's paper http://arxiv.org/abs/hep-ph/0702119

- Introduce a new channel in VBF H->bb
- pp->h(bb) jj +γ
 - Measurement of bbH and WWH coupling
 - By requiring a central photon
 - S/B ratio is much better than VBF H->bb

中國科學院為能物理研究所 Institute of High Energy Popysics

MC Samples

- Signal samples (VBF H(->bb)+γ):
 - generated with Madgraph, parton shower by Pythia8
- Z(bb)γ+jets (resonance background)
 - EWK VBF H(->bb)+γ
 - generated with Madgraph, parton shower by Pythia8
 - QCD VBF H(->bb)+γ
 - generated with Madgraph, parton shower by Pythia8
- QCD γbb+jets (Non resonance background)
 - generated with Madgraph, parton shower by Pythia8

For MVA training

中國科學院為能物招研究所 Institute of High Energy Miysics

Trigger

- Threshold for single photon trigger and 4jets triggers are high.
 - Single photon: trigger EF_g120_loose (ET>120GeV. too high)
 - General 4jet triggers : ET>100GeV (too high)
- Dedicated trigger developed in 2015 for this analysis.
- Analysis is mainly based on VBF0b trigger.
 - L1 item : L1EM22VHI (trigger on EM object with ET>22GeV)
 - HLT :
 - Medium ID photon, pT >25GeV

Nick name	• Mjj>700GeV	Integrated lumiosity
VBF0b	HLT_g25_medium_L1EM22VHI_4j35_0eta490_invm700	2.5 fb-1 (2015)
	A IA S	10.1 fb-1 (2016)
		FILD M CUILMIN

Institute of High Energy Physics

How to Identify b quark jets in ATLAS

Impact of each systematics

Non-resonance background systematics is the leading systematics.

Uncertainty source	Uncertainty $\Delta \mu$
Non-resonant background uncertainty in medium-BDT region	0.22
Non-resonant background uncertainty in high-BDT region	0.21
Non-resonant background uncertainty in low-BDT region	0.17
Parton shower uncertainty on $H + \gamma$ acceptance	0.16
QCD scale uncertainty on $H + \gamma$ cross section	0.13
Jet energy uncertainty from calibration across η	0.10
Jet energy uncertainty from flavour composition in calibration	0.09
Integrated luminosity uncertainty	0.08

MVA Input varialbe: H_T^{soft}

• Low QCD activity in rapidity gap of two VBF jets for VBF

 H_T^{soft} : the scalar sum p_T of the soft TrackJets with $p_T > 7$ GeV (HT_soft).

中國科學院為能物昭湖完施 Institute of High Energy Physics

Major Background process

Event pre-selection

Selection	Requirement
Derivation	HIGG5D3
Trigger	HLT_g25_medium_L1EM22VHI_4j35_0eta490_invm700
Event quality	pass GRL
(data only)	no Tile, LAr, SCT and Core error
Primary Vertex	At least one primary vertex
Photon	≥ 1 photon
Jets	\geq 4 jets (p_T > 40 GeV, η < 4.5)
	\geq 2 jets in η < 2.5 (central jets)
Higgs signal	two central jets with highest MV2c10 weights
jet (BB)	
VBF jets (JJ)	pair of non-signal jets with highest invariant mass
<i>b</i> -jets	2 b-tagged jets
	(tagged on the BB pair with MV2c10 at 77% fixed cut working point)
m_{JJ}	$m_{JJ} > 800 \text{ GeV}$
$p_T(BB)$	$p_T(BB) > 80 \text{ GeV}$

中國科學院為能物昭為完施 Institute of High Energy Physics

MVA studies

 BDT training satisfies signal: Hbbjja background: I 11 BDT input value 	ariables: $p_T^{balance} = \frac{(p^{b_1} + p^{b_2} + p^{j_1} + p^{j_2})}{p_T^{b_1} + p_T^{b_2} + p_T^{j_1} + p^{j_2}}$ $centrality(\gamma) = \left \frac{y_{\gamma} - \frac{y_{j_1} + y_{\gamma}}{2}}{y_{j_1} - y_{j_2}} \right $	$\frac{p_T^{j_2} + p^{\gamma})_T}{p_T^{j_2} + p^{\gamma}}$
variable	definition	
dRB1Ph, dRB2Ph, dRJ1Ph, dRJ2Ph	angular separation between the selected jets and the photon	
mJJ, dEtaJJ	kinematics of the VBF jets	
WidthJ1, WidthJ2	calorimeter jet width of the VBF jets	
pTBal	pT balancing variable for selected final state objects	
cenPhJJ	centrality of the photon with respect to the VBF jets	
HT_soft	scalar sum pT of the soft TrkJets (pT>7GeV)	

中國科學院為能物昭和完施 Institute of High Energy Physics

and the second s

m_{bb} Fit configurations

- H+ γ normalization $\mu_{H is}$ the parameter of interest.
- H+γ and Z+γ shape from MC simulation
- Z+γ normalization from MC predictions
 - The normalization of are from MC simulation.
- Non-resonance background is fitted as 2nd order polynomial

• Z+γ fit configuration

- EWK Z(bb)γ+jets and QCD Z(bb)γ+jets are considered as signal
- H+γ and Z+γ shape from MC simulation
- H+γ is normalization from MC simulation

$$\mathcal{L}(\mu,\theta) = \prod_{j=1}^{N} \frac{(\mu s_{j}(\theta) + b_{j}(\theta))^{n_{j}}}{n_{j}!} e^{-(\mu s_{j}(\theta) + b_{j}(\theta))} \prod_{i=1}^{Q} f_{X}(\theta_{i}|\bar{\theta_{i}},\sigma_{\theta_{i}}) \prod_{l=1}^{P} \mathcal{G}_{X}(\theta_{l}|\bar{\theta_{l}},\sigma_{\theta_{l}}) \mathcal{C}_{I}(\theta_{l}) = \int_{\mathcal{H}_{i}} \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l}|\bar{\theta_{l}},\sigma_{\theta_{l}})}{n_{j}!} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l}) = \int_{\mathcal{H}_{i}} \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l}|\bar{\theta_{l}},\sigma_{\theta_{l}})}{n_{j}!} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l}) = \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l}|\bar{\theta_{l}},\sigma_{\theta_{l}})}{n_{j}!} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l}) = \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l}|\bar{\theta_{l}},\sigma_{\theta_{l}})}{n_{j}!} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l}) = \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l})}{n_{j}!} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l}) = \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l})}{n_{j}!} \mathcal{C}_{X}(\theta_{l})} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l}) = \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l})}{n_{j}!} \mathcal{C}_{X}(\theta_{l})} \mathcal{C}_{X}(\theta_{l})} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{I}(\theta_{l})} \mathcal{C}_{X}(\theta_{l}) = \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l})}{n_{j}!} \mathcal{C}_{X}(\theta_{l})} \mathcal{C}_{X}(\theta_{l})} \mathcal{C}_{X}(\theta_{l})} \mathcal{C}_{X}(\theta_{l})} \mathcal{C}_{X}(\theta_{l}) = \int_{\mathcal{H}_{i}} \frac{\mathcal{G}_{X}(\theta_{l})}{n_{j}!}} \mathcal{C}_{X}($$

\mathbf{m}_{bb} fit

中國科學院為能物現研究所 Institute of High Energy Physics

Result

ATLAS-CONF-2016-063

<u>H+y fit configuration</u>

- H+ γ normalization $\mu_{H\,is}$ the parameter of interest.
- Z+γ normalization and Z+γ shape from MC simulation
- Z+γ fit configuration
 - EWK Z(bb)γ+jets and QCD Z(bb)γ+jets are signal
 - H+γ normalization and H+γ shape from MC simulation

Result	$H(\rightarrow b\bar{b}) + \gamma jj$	$Z(\to b\bar{b}) + \gamma jj$
Expected significance	0.4	1.3
Expected p -value	0.4	0.1
Observed p -value	0.9	0.4
Expected limit	$6.0 \ {}^{+2.3}_{-1.7}$	$1.8 \ {}^{+0.7}_{-0.5}$
Observed limit	4.0	2.0
Observed signal strength μ	$-3.9 \ ^{+2.8}_{-2.7}$	0.3 ± 0.8

Systematic uncertainties

- Theoretical uncertainties for H+gamma and Z+gamma
 - QCD scale systematics
 - Parton shower systematics
- Non-resonance background systematics
 - Statistics in mbb sideband region
- Experimental uncertainties
 - Jet systematics (Jet energy scale)
 - B-tagging efficiency systematics

Analysis strategy

- **Pre-selection cut**
- MVA analysis (boosted decision tree)
 - category the events into three category
- Extract signal from m_{bb} fit

use a BDT to separate the signal and non-resonant background

Perform fit in m_{bb} spectrum

(QCD)

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 12.6 \text{ fb}$

70

How to Identify b quark jets in ATLAS(1)

- Two ways to Identify b jets
 - impact parameters
 - secondary vertex from B decay

VH(bb): 3 channels

b

≻

- > 0-lepton:
 E_⊥^{miss} > 150 GeV
 - 1-lepton: e/μ, p_τ>25 GeV Tight isolation Missing E_τ p_τ^V > 150 GeV
 - 2-leptons: Isolated ee, $\mu\mu$ $p_{\tau}^{1}>25 \text{ GeV}, p_{\tau}^{2}>7 \text{ GeV}$ No missing E_{τ} , m_{μ} compatible with m_{z}

Two jets anti-kT with R=0.4 P_T^{j1}>45 GeV p_T^{j2}>20 GeV

- Improved b-tagging with respect to Run 1:
 - Eff: 70%, light jet rejection: 380, charm rejection: 12
- Analysis categories:
 2/3 jets (0/1lepton)
 2/≥3jets (2lept.)
 P_T^V </>> 150 GeV (2lept)

тынин ој энуп ъненуу чнузиб

VH(bb) background

- Z+bjets dominates in 0, 2 lepton channels
- Top quark and W+jets in 1 lepton channel
- Multi-jet background
 - negligible in 0/2 lepton channels after anti-QCD cuts
 - Data-driven estimate in 1 lepton channel
 0 Lepton
 1 Lepton

