Higgs Physics at the CEPC

On behavior of the CEPC Simulation Study Group

Manqi Ruan

Higgs @ CEPC

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

CEPC Conceptual detector, developed from ILD

A detector reconstruct all the physics object (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision

 High Precision VTX located close to IP: b, c, tau tagging High Precision Tracking system: δ(1/Pt) ~ 2*10⁻⁵(GeV⁻¹)
 PFA oriented Calorimeter System (~o(10⁸) channels): Tagging, ID, Jet energy resolution, ect 18/11/2016

Detector performance

Acceptance	$ \cos(\theta) < 0.995$ (from the inner radius of the outmost tracking disk)
Tracking Efficiency	For isolated charged particle with energy > 1 GeV: $\sim 100\%$
Photon Reconstruction Efficiency	For isolated photon with energy > 0.5 GeV: $\sim 100\%$
Tracker resolution	$\delta(1/P_T) = 2*10^{-5} (\text{GeV}^{-1})$
ECAL intrinsic resolution	$\delta E/E = 16\%/\sqrt{E/GeV} \oplus 0.5\%$
HCAL intrinsic resolution	$\delta E/E = 60\% / \sqrt{E/GeV} \oplus 1\%$
Jet energy resolution	$\delta E/E = 4\%$
Typical Distance for shower separation	< 3 cm
Lepton identification	For charged particle with Energy >2GeV: Lepton identification
	efficiency > 99.5%, P(hadron→muon)~P(hadron→electron): 1%
b-tagging	At Z pole samples & eff($b\rightarrow b$)) = 80%, P(uds $\rightarrow b$) < 1%, P($c\rightarrow b$) ~ 10%
c-tagging	At Z pole samples & eff($c \rightarrow c$)) = 60%, P(uds $\rightarrow c$) = 7%, P($b \rightarrow c$) = 12%

Performance at full reconstruction

Benchmark separation distance < 3 cm Testing on 10 GeV Pion + 5 GeV Photon Sample)

Higgs analyses at Pre-CDR

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i}$$

$$\delta \sim c_i \frac{v^2}{M^2}$$

% precision → M ~ 1 TeV to new physics → ~ × 10 over LHC

Status now

~50 independent analysis at Full Simulation level

	PreCDR (Jan 2015)	Now (Aug 2016)
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.2%
σ(ZH)*Br(H→WW)	1.5%	1.0%
σ(ZH)*Br(H→ZZ)	4.3%	4.3%
σ(ZH)*Br(H→π)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
σ(ZH)*Br(H→Zγ)	-	~4 σ
σ(ZH)*Br(H→μμ)	17%	12%
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)	-	1.7e-4/1.2e-4
Br(H→bbχχ)	<10 ⁻³	3.0e-4

Model-independent measurement of $\sigma(ZH)$

Zhenxing Chen & Yacine Haddad

• M. McCullough, 1312.3322

Workflow for Br(H->bb, cc, gg) measurements general event selection + Template fit

2. Selection

Cut Definition	Sig.	qq	qqnn	qqln	xxh
FSClasser output	148955	25M	183687	3698817	63194
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	148808	23M	163088	3439927	58882
$110 < E_{\rm total} < 150$	132561	10M	125878	705357	34215
$P_{T} > 19$	126006	34198	116314	627602	32300
Isolation lepton veto	123586	33775	115867	327206	23773
$100 < M_{\rm inv} < 135$	117845	9506	10420	162511	21277
$70 < M_{\rm rec} < 125$	111886	7521	10045	110426	20458
$0.15 < y_{12} < 1$	111353	7405	9702	101797	19983
$y_{23} < 0.06$	105078	6644	8456	69313	14495
$y_{34} < 0.008$	100117	6504	7878	58532	6899
$-0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	97277	5178	5365	33293	6273
BDT > -0.01	76666	344	118	69	1594
Significance			265.20		
Efficiency			51.5%		4

Flavor tagging

Figure 7: The B-C Likeliness characteristics for Signal and other Higgs Background. The Standard Model Background isn't included in because there is no B-C Likeliness.

No SM bkg in template fit, since no full simulation

Br(H→WW)

H→*WW*/*ZZ*: Portal to Higgs width & perfect test bed for detector/reconstruction performance...

	Z→II	tautau	VV	qq	
H→WW*→4q	6.91k	3.45k	19.74k	69.1k	
μνqq	2.27k	1.14k	6.47k	22.7k	
evqq	2.27k	1.14k	6.47k	22.7k	
eevv	186	93	527	1.9k	
μμνν	186	93	527	1.9k	
eµvv	372	186	1154	3.7k	
X + tau	3.2k	1.6k	9.14k	32.0k	
	Extrapolated from ILC results				
	Await for tau finder				
	Await for the SM Background simulation				
	Full Simulation				
	Preliminary result acquired				

Unexplored

Expected Number of events with different objects

- Br(H \rightarrow WW), Combined accuracy ~ 1.0% from 13 independent full simulation analyses
 - 1.45% at IIH, $H \rightarrow WW^* \rightarrow$ inc channels, 12 independent channels.
 - ~ 1.7% at vvH, $H \rightarrow WW^* \rightarrow 4q$ channel (Preliminary. ILC extrapolation = 2.3%)
 - 2.3% at qqH, $H \rightarrow WW^* \rightarrow 2qlv$ channel (extrapolated from ILC full simulation)
- High efficiency in event reconstruction

Br(H→WW)

ZH, H->WW*	Yield	Object	Isolation	Signal	Main	Accuracy	Combined
		reconstructed		Efficiency	Background		
Z(μμ)H(evev)	88	76(86.36%)	61(80.26%)	36(40.91%)	4(ZH)	17.57%	
$Z(\mu\mu)H(\mu\nu\mu\nu)$	89	80(89.89%)	77(96.25%)	52(58.43%)	6(ZH&ZZ)	14.65%	
Z(μμ)H(evμv)	174	157(90.23%)	147(93.63%)	105(60.34%)	0	9.76%	2.68%
Z(μμ)H(evqq)	1105	1042(94.30%)	864(82.92%)	663(60.00%)	45(ZH)	4.02%	
$Z(\mu\mu)H(\mu vqq)$	1110	1056(95.14%)	988(93.56%)	717(64.59%)	159(ZH&ZZ)	4.13%	
$Z(\mu\mu)H(qqqq)$	Preliminary					3.0%	
Z(ee)H(evev)	91	62(68.13%)	60(96.77%)	22(24.16%)	16(SZ)	28.02%	
Z(ee)H(μvμv)	82	63(76.83%)	63(100%)	44(53.66%)	24(SZ)	18.74%	
Z(ee)H(evµv)	178	132(74.16%)	124(93.94%)	82(46.07%)	25(ZH&SZ)	12.61%	2.87%
Z(ee)H(evqq)	1182	1041(88.07%)	916(87.99%)	621(51.78%)	188(SZ&ZH)	4.62%	
Z(ee)H(µvqq)	1221	1194(97.79%)	1048(87.77%)	684(56.02%)	49(ZH&SZ)	3.96%	
Z(ee)H(qqqq)			Preliminary	estimation			3.2%

- Full Simulation on 12 independent channels
 - Very high object reconstruction efficiency
 - Combined result: 1.1%
- Extrapolation from other ILC channels: 2.2%
- Combined: 1.0%

	Z→II	tautau	vv	gg
H→WW*→4q		3.45k	< 1.9%	69.1k
μνqq		1.14k	6.47k	2.2%
evqq	1 4 5 0/	1.14k	6.47k	2.2/0
eevv	1.43%	93	527	1.9k
μμνν		93	527	1.9k
eµvv		186	1154	3.7k
X + tau	3.2k	1.6k	9.14k	32.0k

$Br(H \rightarrow ZZ)$

Z→II tautau VV qq H→ZZ*→4q 3.10k 9.24k 888 444 508 254 5.29k 2v + 2q1.77k 2l + 2q170 85 596 1.8k 4v 73 756 36 254 2I + 2v49 24 170 508 41 8 4 28 86 X + tau 120 60 418 1246 More than 2 jets, Await for sophisticated Jet Clustering Await for tau finder limited accuracy ~ > 50% Explored by H->invisible analysis -> Accuracy ~ 40% Promising channels Unexplored

Expected Number of events with different objects

- Br(H \rightarrow ZZ), explored at 18 different channels with full simulation (IIvvqq, 4lqq, II4q, 2l4v)
 - 8 Channels has individual accuracy better than 25%: Combined accuracy ~ 5.4%
 - 8 with accuracy worse than 25 50%
 - 2 with accuracy worse than 50% (IIH, $H \rightarrow ZZ \rightarrow 4q$ and vvH, $H \rightarrow ZZ \rightarrow IIvv$)
- High efficiency in event reconstruction

$Br(H \rightarrow ZZ)$

ZZZ*	Yield	Object	Signal	Main	Accuracy	Comments
		reconstructed	Efficiency(%)	Background	(%)	
μμννqq	128	118	63.3	h->ww&zz_sl	12.9	Tau finder would be
μμqqvv	128	125	-	h->bb&zz_sl	>25	highly appreciated
eevvqq	132	91	53.8	h->ww&sze_sl	15.8	
eeqqvv	132	88	-	h->bb&zz_sl	>25	Reconstructed
vvµµqq	158	144	61.4	h->t,w&zz_sl	11.0	efficiency of electron
vvqqµµ	158	149	51.9	h->w,b&zz_sl	12.9	need to be improved
vveeqq	151	118	43.1	h->w&sze_sl	21.3	
vvqqee	151	134	-	h->bb&sze_sl	>25	
qqµµvv	135	115	-	h->tt&zz_sl	>25	Compare to ll recoil,
qqvvµµ	135	122	-	h->t,w&zz_sl	>25	qq recoil mass has much worse
qqeevv	127	107	-	h->tt&sze_sl	>25	distinguishing power
qqvvee	127	123	-	h->t,w&sze_sl	>25	to SM background
µµµµqq/qqµµ	43	39	69.8	h->tt&zz_sl	19.9	Tau finder & Electron
µµeeqq/qqee	43	39	60.5	h->tt&zz_sl	21.2	Reconstruction
eeeeqq/eeqqee	43	33	-	h->tt&sze_sl	>25	
eeµµqq/eeqqµµ	43	41	58.2	h->tt&sze_sl	19.9	

Full Simulation analysis performed on 16 independent channels.

8 Channels acquire accuracy better than 25%.

Combined accuracy: 5.4%

If electron id efficiency ~ muon id: **4.8%**

If tau finder (used for veto) is mature: ??

TLEP extrapolation: 4.3%

Higgs width measurement

- $g^{2}(HXX) \sim \Gamma_{H \rightarrow XX} = \Gamma_{total}^{*}Br(H \rightarrow XX)$
- Branching ratios: determined simply by
 - σ(ZH) and σ(ZH)*Br(H→XX)
- Γ_{total} : determined from:
 - From $\sigma(ZH)$ (~g²(HZZ)) and $\sigma(ZH)^*Br(H\rightarrow ZZ)$ (~g⁴(HZZ)/ Γ_{total})
 - From $\sigma(ZH)^*Br(H\rightarrow bb)$, $\sigma(vvH)^*Br(H\rightarrow bb)$, $\sigma(ZH)^*Br(H\rightarrow WW)$, $\sigma(ZH)$

Br(H->ZZ): relative error of 6.9% achieved with ZH->ZZZ*->vv(Z)llqq(H) final states. Extrapolation of TLEP result leads to 4.3% relative error

 $\sigma(vvH)$ *Br(H->bb): relative error of 2.8%

A combined accuracy of 2.8% for the Higgs total width measurements 18/11/2016

Br(H \rightarrow TT) & Br(H \rightarrow Z γ)

Br(H \rightarrow TT): 3% accuracy acquired by mumuH channel; overall accuracy < 1% (Dan Yu) H \rightarrow Z γ events: 4 σ signal (Weiming Yao)

Higgs rare decay

Feng Wang, Jianhuan Xiang, Yitian Li. etc

Binlong Wang, Zhenwei Cui

15

Exotic: Higgs invisible decays

Assuming sigma(ZH)*Br(H->inv) = 200 fb

Invisible up limit at CEPC: 0.14% at 95% C.L

Up limit of Br(H \rightarrow ee) & Br(H \rightarrow eµ)

Assuming sigma(ZH)* $Br(H \rightarrow ee/e\mu) = 200 \text{ fb}$ Lei Wang 1000 500 CEPC Simulation CEPC Simulation **Global Fit** Entries/(0.125 GeV/c²) 800 Global Fit Entries/(0.125 GeV/c²) 400 CBShape CBShape CBShape CBShape Background Background 300 600 400 200 100 200 O 125 125 **120** 130 **120** 130 $M^{e\mu}_{invmass}(GeV/c^2)$ M_{invmass}^{e+e-}(GeV/c²)

95% up limit: Br(H->ee) = 1.7e-4; Br(H->emu) = 1.2e-4;

- Typical processes in 2HDM & NMSSM
- Joint efforts by HK Cluster and IHEP
 - Study proposed by T. Liu
 - Main analyzer, Jiawei Wang, Kevin & Zhenxing Chen
- 95% CL up limit ~o(10⁻⁴).

H->Exotic, hadronic

Para: M(LSP) = 0; M(h0) = 15 GeV; M(NLSP) = 20 GeV

- 95% CL. Uplimt set to be 5E-4; will be significantly improved by including di-electron/tau channel...
- ISR effect not included in the Signal sample. sigma(ZH) refered to SM Xsec of 200 fb. Effect on uplimit setting could be ignored

H→Exotic, Hadronic

Benchmark Points

Scan over the parameter space for sensitivity:

1. Fix $m_{\tilde{\chi}_1^0} = 0$ GeV and make exclusion contours on the m_{h^0} and $m_{\tilde{\chi}_2^0}$ plane with the range:

 $\begin{array}{l} 10 \; \mathrm{GeV} < m_{h^0} < 60 \; \mathrm{GeV} \; (15,25,35,45,55 \; \mathrm{GeV}) \\ 10 \; \mathrm{GeV} < m_{z^0} < 125 \; \mathrm{GeV} \; (20,40,60,80,100,120 \; \mathrm{GeV}) \end{array}$

2. Fix $m_{h^0} = 30 \text{ GeV}$ and make exclusion contours on the $m_{\tilde{\chi}_1^0}$ and $m_{\tilde{\chi}_2^0}$ plane, with the range:

0 GeV < $m_{\tilde{\chi}_1^0}$ < 60 GeV (5,15,25,35,45,55 GeV) 10 GeV < $m_{\tilde{\chi}_2^0}^{0}$ < 125 GeV (20,40,60,80,100,120 GeV)

Suggested by prof. Liu

Summary

- CEPC, an electron-positron Higgs factory & an precision EW machine, expecting 1M Higgs bosons
 - o(0.1-1%) level accuracy in absolute measurement of Higgs Branching ratio and couplings
 - Higgs total width measured to 2.8%
 - Good access to SM Higgs rare decays (μμ, γγ, Ζγ)
 - Higgs exotic decays, limited to better than 0.1% level
 - EW Program significantly enhance the access to the New Physics
- Complementary to LHC & Linear Colliders
 - + LHC, enhance the access to rare decays;
 - + Linear Colliders, enhance the measurement to the Higgs boson width;
 - Both provide direct access to g(Htt) & g(HHH)

Back

IHEP-CEPC-DR-2015-01 IHEP-AC-2015-01

Can be downloaded from

http://cepc.ihep.ac.cn/preCDR/volume.html

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

403 pages, 480 authors

328 pages, 300 authors

The CEPC-SPPC Study Group

March 2015

The CEPC-SPPC Study Group

March 2015

CEPC-SPPC

- Electron-positron collision phase
 - Higgs factory: collision at ~240 250 GeV center-of-mass energy, Instant luminosity ~ 2*10³⁴ cm⁻²s⁻¹,
 1M clean Higgs event at 2 IP over 10 years
 - Z pole operation for precise EW measurement
- Proton-Proton collision phase
 - center-of-mass energy constrained by tunnel circumference and high-field dipole
 - Peak luminosity ~ $1*10^{35}$ cm⁻²s⁻¹ (*ArXiv: 1504.06108, discussion on needed Luminosity*)
- Tunnel circumference: 54 km in the baseline design. Longer tunnel to be evaluated.

EW Physics

From 10 Billion Z bosons + the data at Higgs runs

New Physics Reach via dim-6 operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{ij} rac{\mathbf{y}_{ij}}{\mathbf{\Lambda} \sim 10^{14} \text{GeV}} (\overline{L}_i \widetilde{\mathbf{H}}) (\widetilde{\mathbf{H}}^{\dagger} L_j) + \sum_i rac{\mathbf{c}_i}{\mathbf{\Lambda}^2} \mathcal{O}_i \,.$$

 $\begin{array}{c} \mathcal{O}_{\mathsf{H}} = \frac{1}{2} (\partial_{\mu} |\mathsf{H}|^{2})^{2} & \mathcal{O}_{\mathsf{WW}} = g^{2} |\mathsf{H}|^{2} \mathcal{W}_{\mu\nu}^{a} \mathcal{W}^{a\mu\nu} & \mathcal{O}_{\mathsf{L}}^{(3)} = (i\mathsf{H}^{\dagger}\sigma^{a} \overset{\partial}{D}_{\mu} \mathsf{H}) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L}) \\ \mathcal{O}_{\mathsf{T}} = \frac{1}{2} (\mathsf{H}^{\dagger} \overset{\partial}{D}_{\mu} \mathsf{H})^{2} & \mathcal{O}_{\mathsf{BB}} = g^{2} |\mathsf{H}|^{2} \mathcal{B}_{\mu\nu} \mathcal{B}^{\mu\nu} & \mathcal{O}_{\mathsf{L}}^{(3)} = (i\mathsf{H}^{\dagger}\sigma^{a} \overset{\partial}{\Psi}_{L}) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L}) \\ \mathcal{O}_{\mathsf{WB}} = gg' \mathsf{H}^{\dagger} \sigma^{a} \mathsf{H} \mathcal{W}_{\mu\nu}^{a} \mathcal{B}^{\mu\nu} & \mathcal{O}_{\mathsf{L}}^{(3)} = (i\mathsf{H}^{\dagger} \overset{\partial}{D}_{\mu} \mathsf{H}) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L}) \\ \mathcal{O}_{\mathsf{WB}} = gg' \mathsf{H}^{\dagger} \sigma^{a} \mathsf{H} \mathcal{W}_{\mu\nu}^{a} \mathcal{B}^{\mu\nu} & \mathcal{O}_{\mathsf{L}} = (i\mathsf{H}^{\dagger} \overset{\partial}{D}_{\mu} \mathsf{H}) (\overline{\Psi}_{L} \gamma^{\mu} \Psi_{L}) \\ \mathcal{O}_{\mathsf{HW}} = ig(D^{\mu}\mathsf{H})^{\dagger} \sigma^{a} (D^{\nu}\mathsf{H}) \mathcal{W}_{\mu\nu}^{a} & \mathcal{O}_{\mathsf{R}} = (i\mathsf{H}^{\dagger} \overset{\partial}{D}_{\mu} \mathsf{H}) (\overline{\psi}_{R} \gamma^{\mu} \psi_{R}) \\ \mathcal{O}_{\mathsf{g}} = g_{\mathsf{s}}^{2} |\mathsf{H}|^{2} \mathcal{G}_{\mu\nu}^{a} \mathcal{G}^{a\mu\nu} & \mathcal{O}_{\mathsf{HB}} = ig'(D^{\mu}\mathsf{H})^{\dagger} (D^{\nu}\mathsf{H}) \mathcal{B}_{\mu\nu} \end{array}$

Status

•Initial study of $zH \rightarrow zz\gamma \rightarrow qqvv\gamma$ is promising to be 4 σ with 5 ab⁻¹.

	PreCDR (Jan 2015)	Now (Aug 2016)
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.3%
σ(ZH)*Br(H→WW)	1.5%	1.0%
$\sigma(ZH)^*Br(H\rightarrow ZZ)$	4.3%	4.3%
σ(ZH)*Br(H→тт)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
σ(ZH)*Br(H→Zγ)	-	~4 o
σ(ZH)*Br(H→μμ)	17%	17%
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)		1.7e-4/1.2e-4
Br(H→bbχχ)	<10 ⁻³	3.0e-4

From Hits to Final State Particles

Goal: ... Access the origin o every detector hit ...

Z→2 muon, H→2 b

 $Z \rightarrow 2 \text{ jet},$ $H \rightarrow 2 \text{ tau}$

ZH→4 jets

Z→2 muon H→WW*→eevv

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

> Specific Final State... Overlap with lots of PU events

e⁺e⁻ and pp complementary

o(10⁹⁻¹⁰) Higgs at SPPC

Event rates measured at pp collision $\sigma \cdot BR(X \to H \to Y) = \sigma_X \frac{\Gamma_Y}{\Gamma_{tot}}$

e+e- collider: provide anchor for absolute measurement (total width, etc)

pp collision has direct access to g(HHH) & g(Htt) and better access to Higgs rare decays

ArXiv: 1310.8361 [hep-ex]

Higgs measurements at electron/positron & proton colliders

	Productivity	Finding efficiency	Remarks
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	Lots of Pile Up; Large theoretical/systematic uncertainties. Access to signal strength in major decay channels; Access to g(HHH)/g(Htt).
CEPC	10 ⁶	~o(1)	Absolute measurements in very clean environment; o(0.1%) accuracy on key observable (g(HZZ)); Excellent precision to total width, invisible/exotic decay ratios; Indirect constrain to g(HHH)/g(Htt);
SPPC	10 ⁹⁻¹⁰	?	Good access to Higgs rare decay/generation, g(HHH)/g(Htt),

High complementarity between electron-positron & pp colliders

EW@CEPC

• EW precision measurements with significantly reduced uncertainties:

 $R_b, A_{FB}^b, \sin \theta_W^{eff}, m_Z, m_W, N_{\nu} \cdots$

	Present data	CEPC fit
$lpha_s(M_Z^2)$	0.1185 ± 0.0006 [23]	$\pm 1.0 imes 10^{-4}$ [24]
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	$(276.5\pm0.8) imes10^{-4}$ [25]	$\pm 4.7 \times 10^{-5}$ [26]
m_Z [GeV]	91.1875 ± 0.0021 [27]	± 0.0005
m_t [GeV] (pole)	$173.34 \pm 0.76_{\mathrm{exp}}$ [28] $\pm 0.5_{\mathrm{th}}$ [26]	$\pm 0.2_{exp} \pm 0.5_{th}$ [29, 30]
m_h [GeV]	125.14 ± 0.24 [26]	< ±0.1 [26]
m_W [GeV]	$80.385\pm0.015_{\rm exp}$ [23] $\pm0.004_{\rm th}$ [31]	$(\pm 3_{ m exp} \pm 1_{ m th}) imes 10^{-3}$ [31]
$\sin^2 heta_{ ext{eff}}^\ell$	$(23153\pm16) imes10^{-5}$ [27]	$(\pm 2.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$ [32]
Γ_Z [GeV]	2.4952 ± 0.0023 [27]	$(\pm {f 5}_{ m exp}\pm 0.8_{ m th}) imes 10^{-4}$ [33]
$R_b \equiv \Gamma_b / \Gamma_{\rm had}$	0.21629 ± 0.00066 [27]	$\pm 1.7 imes 10^{-4}$
$R_\ell\equiv\Gamma_{ m had}/\Gamma_\ell$	20.767 ± 0.025 [27]	± 0.007

33

Higgs @ LHC

PP collider: High productivity but low finding efficiency ~already 10⁶ Higgs in Run 1 data...

Higgs signal: found via the decay final states.

 $\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$

