Status and plan of IHEP CMS physics analyses in ZZ channel

Mingshui Chen 院前沿重点项目启动会,暨国际创新海 外团队&所创新团队2016年联合年会 Nov. 18, 2016

CMS Run 2 data taking

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:22 to 2016-10-27 14:12 UTC

LHC finished 2016 pp run in October, delivered 41 fb⁻¹ to CMS and ~37 fb⁻¹ recorded, ~35 fb⁻¹ good data for physics analysis

CMS Run 2 data taking

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:22 to 2016-10-27 14:12 UTC

- An important property to measure of the discovered Higgs boson is its (differential) fiducial cross section
 - Important test of SM predictions and probe of BSM effects
- To minimize model dependence
 - The measurement is performed in a fiducial phase space close to experimental acceptance
 - Fiducial space definition can be reproduced by theorists/phenomenologists

• Acceptance has a strong model dependence, e.g. between SM production modes by up to 60%

• Acceptance has a strong model dependence, e.g. between SM production modes by up to 60%

 Acceptance has a strong model dependence, e.g. between SM production modes by up to 60%

11/18/16

Fiducial phase space definition

Requirements for the ${ m H} ightarrow 4\ell$ fiducial phase space					
Lepton kinematics and isolation					
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20 \ \mathrm{GeV}$				
Sub-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10~\mathrm{GeV}$				
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7~(5)~{ m GeV}$				
Pseudorapidity of electrons (muons) $ \eta < 2.5 (2.4)$					
$p_{\rm T}$ Sum of all stable particles within $\Delta R < 0.4$ from lepton	less than $0.4 \cdot p_{T}$				
Event topology					
Existence of at least two SFOS lepton pairs, where leptons satisfy criteria above					
Inv. mass of the Z_1 candidate	$40 < m(Z_1) < 120 \text{GeV}$				
Inv. mass of the Z_2 candidate	$12 < m(Z_2) < 120 \text{GeV}$				
Distance between selected four leptons	$\Delta R(\ell_i \ell_j) > 0.02$, for any $i \neq j$				
Inv. mass of any opposite-sign lepton pair	$m(\ell_i^+\ell_j^-) > 4$ GeV, for any $i \neq j$				
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140 { m GeV}$				

• A crucial point is the inclusion of isolation in the fiducial selection

- Does not include neutrinos or FSR photons
- without isolation, the difference in efficiency between production modes can be more than 50%

Analysis strategy

Fitting/Unfolding procedure

- Simulataneous fit of 4 differential bins and 3 final states (=12 channels) per differential measurement
- 1 POI (σ_{fid}) per bin controls the normalization of the "Fiducial Signal" components
- 2 additional parameters per bin to float the fractions of each final state
- Fiducial signal from a particular differential bin at fiducial level can contribute to all differential bins at reconstruction level
 - controlled by the detector response matrix (built in the likelihood)
- Mass is fixed to 125.0 GeV

Example fits $p_T(4I)$

JHEP 1604 (2016) 005

Fiducial XS: Run I results

Fiducial XS: 13 TeV results

Higgs mass measurement @ 13 TeV

- Methodology follows Run I approach
- 3D observables to the statistical analysis
 - m₄₁, kinematic
 discriminant D_{bkg}^{kin},
 per-event mass error
 D_m

 $\mathcal{L}_{3D}^{m,\Gamma} \equiv \mathcal{L}_{3D}^{m,\Gamma}(m_{4\ell}, \mathcal{D}_{\mathrm{m}}, \mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}) = \mathcal{P}(m_{4\ell} | m_{\mathrm{H}}, \Gamma, \mathcal{D}_{\mathrm{m}}) \mathcal{P}(\mathcal{D}_{\mathrm{m}} | m_{4\ell}) \times \mathcal{P}(\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}} | m_{4\ell})$

Correction of per-event mass error

- Event by event mass error: lepton momentum error propagated to m4l
- Importan for mass measurement when statistics are limited

Comparison of measured mass resolution with the predicted dilepton mass resolution using the event-by-event mass uncertainty for $Z \rightarrow \ell \ell$ events in data. The dashed lines denote a ±20% region, used as the systematic uncertainty on the resolution.

Mass measurement results

Heavy resonance searches

- Currently we are involved in all three ZZ final states
 - 41: clean final state, but smallest branching ratio
 - best sensitivity for mass range < 500 GeV
 - 2l2q: largest branching ratio, but also huge backgrounds
 - better sensitivity for mass range > 1 TeV
 - 2l2v: relatively clean with modest branching ratio, but two neutrinos present in the final state
 - better sensitivity in the range from 500 GeV to 1 TeV

High mass resonance search

A general search for a scalar resonance with arbitrary mass and width

Plan

CMS Integrated Luminosity, pp

- Continue working on ZZ channel: both Higgs property measurement and new physics searches
- Several improvements in the pipeline for the papers with 2015+2016 full data
- Sensitivity study in 4l channel with Phase II simulation

back up

Fiducial XS: signal

- The inclusive efficiency and non-fiducial ratios are determined from simulation \rightarrow corrections derived from data are applied to the MC efficiencies
- Mild dependence on the production mode (~7%) of the factor $(1+f_{nonfid})\varepsilon$ is a result of the definition of the fiducial volume

Signal process	$\mathcal{A}_{\mathrm{fid}}$	e	f_{nonfid}	$(1+f_{\text{nonfid}})\epsilon$
Individual Higgs boson production modes				
$gg \rightarrow H$ (powheg+JHUgen)	0.422 ± 0.001	0.647 ± 0.002	0.053 ± 0.001	0.681 ± 0.002
VBF (powheg)	0.476 ± 0.003	0.652 ± 0.005	0.040 ± 0.002	0.678 ± 0.005
WH (PYTHIA)	0.342 ± 0.002	0.627 ± 0.003	0.072 ± 0.002	0.672 ± 0.003
ZH (pythia)	0.348 ± 0.003	0.634 ± 0.004	0.072 ± 0.003	0.679 ± 0.005
tīH (pythia)	0.250 ± 0.003	0.601 ± 0.008	0.139 ± 0.008	0.685 ± 0.010
Some characteristic models of Higgs-like boson with exotic decays and properties				
$q\overline{q} ightarrow H(J^{CP}=1^{-})$ (JHUGEN)	0.238 ± 0.001	0.609 ± 0.002	0.054 ± 0.001	0.642 ± 0.002
$q\overline{q} \rightarrow H(J^{CP} = 1^+)$ (JHUGEN)	0.283 ± 0.001	0.619 ± 0.002	0.051 ± 0.001	0.651 ± 0.002
$ m gg ightarrow m H ightarrow m Z\gamma^{*}$ (JHUGEN)	0.156 ± 0.001	0.622 ± 0.002	0.073 ± 0.001	0.667 ± 0.002
$ m gg ightarrow m H ightarrow \gamma^* \gamma^*$ (JHUgen)	0.188 ± 0.001	0.629 ± 0.002	0.066 ± 0.001	0.671 ± 0.002

$$N_{\text{obs}}^{\text{f},i}(m_{4\ell}) = N_{\text{fid}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonres}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonfid}}^{\text{f},i}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i}(m_{4\ell})$$
$$= \underbrace{\left(1 + f_{\text{nonfid}}^{\text{f},i}\right)}_{+ N_{\text{nonres}}^{\text{f},j}} \cdot \mathcal{C}_{\text{fid}} \cdot \mathcal{C}_{\text{res}}^{\text{f}}(m_{4\ell})$$
$$+ N_{\text{nonres}}^{\text{f},i} \cdot \mathcal{P}_{\text{nonres}}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i} \cdot \mathcal{P}_{\text{bkg}}(m_{4\ell}),$$

Fiducial XS: differencial

- For differential measurements, the efficiency becomes a generalized "detector response matrix" (different for every model)
- The response matrix is included in the likelihood such that we directly fit for the fiducial cross section at fiducial level taking into account bin migration effects

Fiducial XS: systematic uncertainties

- Experimental systematic uncertainties mostly from Legacy paper:
 - → Background estimation
 - QCD scale (~3% qqZZ, ~24% ggZZ) and PDF (~3% qqZZ, 7% ggZZ)
 - Reducible Background (20%-40%)
 - → Lepton reconstruction efficiency (10% 4e, 4% 4mu)
 - → Signal Shape
 - Lepton energy scale (0.3% 4e, 0.1% 4mu)
 - Lepton energy resolution (20%)
 - \rightarrow Non-resonant signal contribution
 - Effect on the final measurement is ~+4%/-11%
 - → Integrated Luminosity (2.2% at 7 TeV, 2.6% at 8 TeV)
- For observables involving jets, Jet Energy Scale
 - \rightarrow Correlated across differential bins to preserve unity
 - \rightarrow 3%-12% for signal, 2%-16% for background

Fiducial XS: theory predictions

- ggH simulated with Powheg+JHUgen
 - \rightarrow NLO accuracy in QCD for 0-jets, interfaced to Pythia 6.4
 - → Finite quark mass effects
- ggH simulated with Powheg+minloHJ
 - \rightarrow NLO accuracy in QCD for 0- and 1- jets, interfaced to Pythia 6.4
 - \rightarrow Finite quark mass effects
- ggH with HRes
 - \rightarrow NNLO in QCD + NNLL in resummation of soft gluon effects
 - \rightarrow Finite quark mass effects
 - \rightarrow Parton level generator, no interface to Pythia
 - → Used to reweight Powheg+JHUgen+Pythia in a larger fiducial phase space
 - Plan to update reweighting to be at Powheg+JHUGen+Pythia level with Parton Shower but without Hadronization and UE (small effect)
- VBF simulated with Powheg
- WH, ZH, ttH simulated with Pythia 6.4
- All predictions normalized using cross section recommendations from the LHC Higgs Cross Section Working Group

Fiducial XS: theory uncertainties

- QCD scale and PDF/α_s uncertainties on ggH production computed bin-bybin for each differential observable
 for minlow 1 and WDes, taking into account events with negative weights
 - \rightarrow for minloHJ and HRes, taking into account events with negative weights
- For VBF, WH, ZH, ttH QCD scale and PDF/ α_s uncertainties taken as constant across bins and taken from LHCHXSWG
- PDF/ α_s uncertainties correlated between VBF and VH, anti-correlated between ggH and ttH
- QCD scale uncertainties uncorrelated between production modes
- Uncertainty on acceptance (2%) and H \rightarrow ZZ \rightarrow 4ℓ branching ratio (2%) correlated across production modes
- For N(jets) measurement, use Stewart-Tackmann procedure

$$\Delta_N^2 = \Delta_{\geq N}^2 + \Delta_{\geq N+1}^2$$
 arxiv:1107.2117

2016 ICHEP $H \rightarrow ZZ \rightarrow 4I$ analysis

New results on the study of Higgs boson production in the four-lepton final state at $\sqrt{s} = 13$ TeV

M. Ahmad¹, N. Amapane², M. Bachtis³, R. Bellan², R. Bhattacharya⁴, C. Charlot⁵, M. Chen¹, T. Cheng¹, R. Covarelli², B. Cox⁶, S. Duric⁷, L. Finco², A. Gritsan⁸, B. Hirosky⁶, M.B. Kiani², A. Korytov⁹, M. Kovac¹⁰, D. Lelas¹⁰, H. Li⁶, K. Long⁷, C. Mariotti¹¹, J. McInerney⁸, H. Mei⁹, E. Migliore², P. Milenovic⁹, V. Milosevic¹², G. Mitselmakher⁹, C. Ochando⁵, G. Ortona⁵, P. Pigard⁵, G. Petrucciani³, G.L. Pinna Angioni², R. Plestina¹, D. Polic¹⁰, I. Puljak¹⁰,
S. Regnard⁵, P.M. Ribeiro Cipriano¹⁰, H. Roskes⁸, S. Roy Chowdhury⁴, R. Salerno⁵, U. Sarica⁸, S. Sarkar⁴, A. Savin⁷, T. Sculac^{5,10}, Y. Sirois⁵, N. Smith⁷, D. Sperka⁹, P. Traczyk², Y. Wang⁶, N. Woods⁷, M. Xiao⁸, and C. You⁸

¹ IHEP, Beijing
 ² Università di Torino and INFN Torino
 ³ CERN
 ⁴ Saha Institute of Nuclear Physics, Kolkata, India
 ⁵ Laboratoire Leprince-Ringuet
 ⁶ University of Virginia
 ⁷ University of Virginia
 ⁸ Johns Hopkins University
 ⁹ University of Florida
 ¹⁰ University of Split
 ¹¹ INFN Torino
 ¹² University of Belgrade

Run 1 SM-like Heavy Higgs

