New Physics Implication of Higgs Precision Measurements

Shufang Su • U. of Arizona

IHEP

Nov 19, 2016

Collaboration with J. Gu, H. Li, Z. Liu, W. Su.

S. Su

Outline

- Higgs precision measurements
- Common strategies
- 2HDM
- Composite Higgs Models
- Sector Conclusion

Higgs Precision Measurements

Higgs Precision Measurements

LHC: 14 TeV, 300 fb⁻¹, 3000 fb⁻¹

$\Delta \mu / \mu$	300 fb^{-1}		3000 fb^{-1}	
	All unc.	No theory unc.	All unc.	No theory unc.
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04
(0j)	0.19	0.12	0.16	0.05
(1j)	0.27	0.14	0.23	0.05
(VBF-like)	0.47	0.43	0.22	0.15
(WH-like)	0.48	0.48	0.19	0.17
(ZH-like)	0.85	0.85	0.28	0.27
(<i>ttH</i> -like)	0.38	0.36	0.17	0.12
$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04
(VH-like)	0.35	0.34	0.13	0.12
(<i>ttH</i> -like)	0.49	0.48	0.20	0.16
(VBF-like)	0.36	0.33	0.21	0.16
(ggF-like)	0.12	0.07	0.11	0.04
$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05
(0j)	0.18	0.09	0.16	0.05
(1j)	0.30	0.18	0.26	0.10
(VBF-like)	0.21	0.20	0.15	0.09
$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27
$H \rightarrow b\bar{b} \text{ (comb.)}$	0.26	0.26	0.14	0.12
(WH-like)	0.57	0.56	0.37	0.36
(ZH-like)	0.29	0.29	0.14	0.13
$H \rightarrow \tau \tau \text{ (VBF-like)}$	0.21	0.18	0.19	0.15
$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.16	0.12
(incl.)	0.47	0.45	04418	0.14
(<i>ttH</i> -like)	0.74	0.72	0.27	0.23

Higgs Precision Measurements

CEPC, 250 GeV, 5 ab⁻¹

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\nu H) \times \mathrm{BR}(H \to bb)$
$5.5 \mathrm{MeV}$	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) \times BR$	BR
$H \rightarrow bb$		0.28%	0.58%
$H \to cc$		2.2%	2.3%
$H \to gg$		1.6%	1.7%
$H\to\tau\tau$		1.2%	1.3%
$H \to WW$		1.5%	1.6%
$H \rightarrow ZZ$		4.3%	4.3%
$H\to\gamma\gamma$		9.0%	9.0%
$H ightarrow \mu \mu$		17%	17%
$H \to \mathrm{inv}$		0.28%	0.28%

Common Strategies

• kappa-scheme

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hff; SM)}$$

Be aware of assumptions and constraints.

S. Su

Common Strategies

• kappa-scheme

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hff; SM)}$$

Common Strategies

• kappa-scheme

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hff; SM)}$$

• EFT: Warsaw basis, SILH basis, Higgs basis

 $\delta c_Z, \quad c_{ZZ}, \quad c_{Z\square}, \quad c_{\gamma\gamma}, \quad c_{Z\gamma}, \quad c_{gg}, \quad \delta y_u, \quad \delta y_d, \quad \delta y_e, \quad \lambda_Z$

S. Su For certain new physics models, only need subset.

New Physics Implication

Two Higgs Doublet Model (CP-conserving)

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0} + iG_{i})/\sqrt{2} \end{pmatrix}$$

$$v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2} \\ \tan \beta = v_{u}/v_{d}$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}, \quad \begin{array}{l} A = -G_{1} \sin \beta + G_{2} \cos \beta \\ H^{\pm} = -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta \end{array}$$

after EWSB, 5 physical Higgses CP-even Higgses: h⁰, H⁰ , CP-odd Higgs: A⁰, Charged Higgses: H[±]

• h⁰/H⁰ VV coupling
$$g_{H^0VV} = \frac{m_V^2}{v} \cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v} \sin(\beta - \alpha).$$

alignment limit: $\cos(\beta - \alpha) = 0$, h⁰ is the SM Higgs with SM couplings. S. Su 9

2HDM parameters

	ф 1	ф2
Type I	u,d,l	
Type II	u	d,l
lepton-specific	u,d	l
flipped	u,l	d

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

Tree-level 2HDM fit

Tree-level 2HDM fit

2HDM, LHC/CEPC fit

Model Distinction

Composite Higgs in one slide

- ${\ensuremath{\bullet}}$ Higgs is the PNGB of the spontaneous breaking of $G{\Rightarrow}H$
- \odot EWSB is induced by vacuum misalignment, parametrized by $\xi {=} v^2 {/} f^2$
- mass of SM fermion generated by mixing with composite states
- Ight top partners can be searched at the LHC
- minimal coset (with custodial symmetry breaking) SO(5)/SO(4)

- hVV
$$r_V \equiv \frac{g_{hVV}^{\text{CH}}}{g_{hVV}^{\text{SM}}} = \sqrt{1-\xi}$$

- hff: depends on the fermion representation

$$F_1 \equiv rac{1-2\xi}{\sqrt{1-\xi}}$$
 $F_2 \equiv \sqrt{1-\xi}$

Composite Higgs

CEPC fit

16

S. Su

- CEPC could measure Higgs properties to a high precision
- Kappa-scheme and EFT scheme
- New physics sensitivity
 - tree level: constrain model parameters
 - 2HDM, composite Higgs, ...
 - loop level: constrain new particle masses
 2HDM, SUSY, ...