A Few Selected Activities in 2016

Zhiqing Zhang

Comprendre le monde, construire l'avenir

Overview

Selected activities in 2016

Plan for next years

"创新国际团队"年会, Nov 18th, 2016

张智庆 (Zhiqing Zhang), LAL, Orsay

- □ Main focus: searching for heavy (scalar) resonance
 - Coordinating analysis activities in WW
 - Strong involvement of Chinese teams
 - Shandong University: ZHAO Yongke (joint PhD), SONG Weimin (visitor at LAL), MA Lianliang et al.
 - USTC: Zuzana Blenessy (Postdoc), HAN Kunlin (future joint PhD) et al.
- Managed to have two sets of preliminary results
 - Moriond 2016: <u>ATLAS-CONF-2016-021</u>
 - ► ICHEP 2016: <u>ATLAS-CONF-2016-074</u>
 - ► Now working for final publication
- \square Made an update on muon g-2 LO hadronic prediction
 - Reported by M. Davier at <u>Tau workshop 2016</u>

Moriond 2016 (ATLAS-CONF-2016-021)

□ Based on 3.2fb⁻¹ Run-2 data taken in 2015 @ 13TeV

- ► Fairly model independent search with:
 - Narrow width approximation (NWA):
 4MeV for ggF & VBF
 - Large width assumption (LWA):
 width/mass: 5-15% for ggF
- ► Mass range: lvlv: [600, 3000]GeV
- Combined IvIv and Ivqq channels

Developed a simple & general procedure for optimising event selection

Wanted to check if the selection cuts used in Run-1 publication are still optimal

The Simple & General Procedure

- A two-step procedure (https://users.lal.in2p3.fr/zhangzq/atlas/selection.pdf)
 - Select the most discriminating variables using BDT
 - Variables having ranking value > 40% wrt to the best ranking variable
 - If two variables are strong correlated (> 80% for both signal and background), remove lower ranked variable
 - Do a signal significance scan (iterative) to find the best threshold (cut) value
 - The signal significance could be a global one or preferably
 - Based on a discriminating variable (m_T in the case of WW→lvlv)
 exploiting shape difference between signal and background:

$$s_{m_{\mathrm{T}}} = \sqrt{\sum_{i} s_{i}^{2}}$$
$$s_{i} = \sqrt{2 \left[(n_{S}^{i} + n_{B}^{i}) \ln \left(1 + \frac{n_{S}^{i}}{n_{B}^{i}} \right) - n_{S}^{i} \right]}$$

ICHEP 2016 (ATLAS-CONF-2016-074)

- □ Based on 13.2fb⁻¹ Run-2 data taken in 2015 and 2016 @ 13TeV
- A number of improvements achieved
 - Extension to lower mass from 600GeV to 300GeV
 - Add VBF 1-jet category in additional to VBF 2-jet one
 - ► Introduce for the first time a (quasi-) inclusive ggF category

Gain Sensitivity by adding VBF 1-Jet Category

- □ VBF events usually selected by requiring at lest 2 jets with large Δy_{jj} and m_{jj}
 - \blacktriangleright But there is a large fraction of VBF in
 - (ggF) 1-jet category
 - A new VBF 1-jet category introduced to maximise VBF/ggF signals

Introduce New (Quasi-)Inclusive ggF Category

- The usual jet categories for 125GeV analysis not ideal for heavy resonance search
 - ➤ Jet p_T threshold 25GeV too low
 - Heavy boson has the tendency to "radiate" more jets
 - 2-jet not optimised for ggF
 - Large jet bin migration errors

□ New strategy:

- ► Increased pT threshold to 30GeV
- Recovered sensitivity in ggF 2-jet phase space
- ➤ Excluding VBF 1-jet & 2-jet phase spaces → Quasi-inclusive ggF category

"创新国际团队"年会, Nov 18th, 2016

张智庆 (Zhiqing Zhang), LAL, Orsay

A Comparison with CMS (ICHEP Results)

Item	ATLAS	CMS
Lumi (fb ⁻¹)	13.2	2.3
Mass range	[300, 3 <mark>000</mark>] GeV	[200, <mark>1000</mark>] GeV
Interpretation	NWA, LWA	EW singlet model
Event categorisation	ggF: quasi-inclusive VBF: 1-jet, ≥2-jets	0, 1, ≥2 jets
Reference	ATLAS-CONF-2016-074	CMS PAS HIG-16-023
$\begin{array}{c} \text{ATLAS} \text{ Preliminary} \\ \sqrt{s} = 13 \text{ TeV}, 13.2 \text{ fb}^{-1} \\ \text{H} \rightarrow \text{WW} \rightarrow \text{ev} \mu \text{v} (\text{ggF}, \text{N}) \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Observed (CLs) Expected (CLs) WA) = ± 1σ ± 2σ = ± 2σ 2000 m _H [GeV]	2.3 fb ⁻¹ (13 TeV) \bigcirc Observed Preliminary Expected $10 \qquad 0+1+2 \text{ jets } \Gamma = \Gamma_{SM}$ $\textcircled{1} 1 \sigma$ Expected $1 \qquad 1 \qquad$

"创新国际团队"年会, Nov 18th, 2016

张智庆 (Zhiqing Zhang), LAL, Orsay

Towards Publication by Moriond 2017

□ Use full 2015+2015 data @ 13TeV: 36.5 fb⁻¹

A number of improvements planned

- Extension to lower mass down to 200GeV & high-mass up to 4TeV
- \blacktriangleright Reoptimise m_T binning
- Improved background and signal systematic uncertainties
- Include additional model interpretations
 - Spin-1 signal in heavy vector triplet (HVT) model
 - Spin-2 signal in Randall-Sundrum bulk graviton model
 - Dimension-6 operator in effective field theory
- Study the impact of interference effects between H-h-SM e.g. in electroweak singlet model

Once published, combination with other VV channels foreseen

Activities on Muon g-2 Prediction

 LO Hadronic Vacuum Polarization being the most uncertain part for a_μ & Δα has been the focus over last 5 decades.
 Our prediction has been a reference for comparison with measurements (e.g. DHMZ 2011 has over 500 citations)

Davier, Hoecker, Malaescu, Zhang, for "Standard Theory Essays in the 60th Anniversary of CERN" published recently by World Scientific

"创新国际团队"年会, Nov 18th, 2016

Recent Update

The update take advantage of more complete data from BABAR, KLOE, BESIII, CMD3 and SND at VEPP-2000, KEDR

Channel	DHMZ 2011	DHMZ 2016
π⁺π⁻	507.8 ± 1.2 ± 2.5 ± 0.6 (2.9)	506.9 ± 1.1 ± 2.2 ± 0.7 (2.5)
π⁺π⁻2π ⁰	18.01 ± 0.14 ± 1.17 ± 0.40 (1.24)	18.16 ± 0.06 ± 0.49 ± 0.27 (0.56)
2π⁺2π ⁻	13.35 ± 0.10 ± 0.43 ± 0.29 (0.53)	13.70 ± 0.03 ± 0.28 ± 0.13 (0.31)
K _L K _S	12.96 ± 0.18 ± 0.25 ± 0.24 (0.39)	12.81 ± 0.06 ± 0.18 ± 0.15 (0.24)
$\mathbf{a}_{\mu}(Had,LO)$	692.2 ± 1.4 ± 3.1 ± 2.4 (4.2)	692.8 ± 1.2 ± 2.6 ± 1.6 (3.3)

The predictions vs measurement:

QED 116584	71.885 ± 0.004
EW	15.4 ± 0.1
had LBL	10.5 ± 2.6
had LO	692.8 ± 3.3
had NLO	-9.87 ± 0.09
had NNLO	1.24 ± 0.01

Prediction: 11659181.9 ± 4.2 Exp BNL: 11659208.9 ± 6.3

→ Deviation: 27.0 ± 7.6 (3.6σ)

Plan for Next Years

- Complete heavy resonant search in WW channel
 - Would still take a few months with all foreseen improvements
 - > Aim for an ATLAS publication ready by Moriond 2017
 - ► Thesis defence of ZHAO Yongke in 2017 after the publication
- Preparing two new projects in ATLAS
 - > A generic search in inclusive Z events at high p_T (thesis of HAN Kunlin)
 - Precision measurement of the W boson mass
 - 19 MeV achieved by ATLAS with 7 TeV data, best single measurement
 - To be compared with 8 MeV from SM prediction (global EW fit)
 - Aim for 10 MeV precision with 8 TeV and 13 TeV data
 - Without new direct discovery at the LHC in next years, precision measurements will be the focus of the LHC physics

□ Available to help the CEPC (R&D) project