BEAM ENERGY MEASUREMENT (BEM)

M-Q. Ruan, G-Y. Tang, J-Y. Zhang The 3rd CEPC P&S Meeting

OUTLINE

Focus on Compton scattering method.

Motivation

- BEM@BEPC-II
- Pre...pre CDR of BEM@CEPC

COMPTON SCATTERING

Novel Radiation Sources Using Relativistic Electrons (by P.Rullhusen, X.Artru, P.Dhez)

BEM@BEPC-II

Nuclear Inst. and Methods in Physics Research, A 659 (2011)

Compton Back-scattering: (head-to-head collision)

•
$$E_{beam} = \frac{\omega_{max}}{2} \sqrt{1 + \frac{m_e^2}{\omega_0 \omega_{max}}}$$

- Hardware: locate at north IP of BEPC-II
 - Laser and optical system.
 - High purity germanium detector: 16384 channels.
 - Pulse generator and isotopes.
 - Data acquisition system.

BEM@BEPC-II • Online procedure:

Nuclear Inst. and Methods in Physics Research, A 659 (2011)

Obtain photon spectrum in tens of minutes. Sum sequential photon spectrums (or not).

Find and identify peak one by one

Evaluate beam energy and spread.

Fit the edge position.

Fit calibration lines by a response function.

Determine the energy dependencies of response function parameters, including the dector resolution.

BENGBEPC-II $f(x) = A \cdot \begin{cases} exp[-\frac{(x-x_0)^2}{2\sigma^2}], & 0 < x - x_0 < +\infty, \\ C + (1-C)exp[-\frac{(x-x_0)^2}{2(K_0\sigma)^2}], & -K_0K_1\sigma < x - x_0 \le 0, \\ C + (1-C)exp[K_1(\frac{(x-x_0)}{(K_0\sigma)} + \frac{K_1}{2})], & -\infty < x - x_0 \le -K_0K_1\sigma, \end{cases}$

 Cs137: 661.657keV; Co60: 1173.228keV and 1332.492keV; Mn55: 846.754keV.

BENGBERC-II $f(x) = A \cdot \begin{cases} exp[-\frac{(x-x_0)^2}{2\sigma^2}], & 0 < x - x_0 < +\infty, \\ C + (1-C)exp[-\frac{(x-x_0)^2}{2(K_0\sigma)^2}], & -K_0K_1\sigma < x - x_0 \le 0, \\ C + (1-C)exp[K_1(\frac{(x-x_0)}{(K_0\sigma)} + \frac{K_1}{2})], & -\infty < x - x_0 \le -K_0K_1\sigma, \end{cases}$

Inear response: peak position = zero point + gain × voltage

BEM@BEPC-II • Online procedure: • Nucl.Instrum.Meth. A659 (2011) 21-29

PRE...PRE CDR OF BEM@CEPC

- If we do the same thing as @BEPC-II
 - 120GeV(beam) + 0.11eV(CO2 laser)→20GeV (scattering photon). Too large to be measured precisely.
- Measure lepton position after scattering;
 Head to head collision.
- Measure photon energy after scattering;
 - Change Xangle.

Inverse Compton scattering

 $\nu' > \nu$ High energy e- initially e- loses energy

MEASURE LEPTON

- Simple simulation is ongoing.
 - Beam energy spread: 0.16%.
 - Bunch size: x~70μm,

y∼0.16µm.

- Distance: 100m.
- Suitable fitting function should be determined from simulation.
- New simulation based on
- MadX will be done if necessary.
 - Uncertainty of B field.

MEASURE LEPTON

- Simple simulation is ongoing.
 - Beam energy spread: 0.16%.
 - Bunch size: x~70μm,
 - у~0.16µт.
 - Distance: 100m.
- Suitable fitting function should be determined from simulation.
- New simulation based on MadX will be done if necessary.
 Uncertainty of B field.

PRE...PRE CDR OF BEM@CEPC

- If we do the same thing as @BEPCII
 - 120GeV(beam) + 0.11eV(CO2 laser)→20GeV (scattering photon). Too large to be measured precisely.
- Measure lepton position after scattering;
- Measure photon energy after scattering;
 - Change Xangle.

Inverse Compton scattering

 $\nu' > \nu$ High energy e- initially e- loses energy

- Crossing angle $[0, \pi]$
- Scattering photon energy v.s. Xangle Scattering photon energy/GeV

- When Xangle is 3.12 rad, maximum scattering photon energy is 2.815 MeV.
- TI208: 2.614MeV.

• TI208: 2.614MeV.

- Uncertainty estimation:
 - Derivative v.s. Xangle

• If 10^{-5} relative uncertainty of beam energy is required, the uncertainty of Xangle should be $10^{-4} \sim 10^{-5}$ radian.

- Uncertainty estimation:
 - Derivative v.s. Xangle

• If 10^{-5} relative uncertainty of beam energy is required, the uncertainty of Xangle should be $10^{-4} \sim 10^{-5}$ radian.

• Minimum: $\sigma_{py} \sim 3 \times 10^{-8}$ rad, $\sigma_{px} \sim 2.4 \times 10^{-6}$ rad.

 σ_{py} , σ_{px} mean the py, px momentum emittance.

- Meet the requirement $(10^{-5} \text{ rad}).$
- More details (including MC simulation) will be given after discussing with accelerator people.

$\beta_y^* = 1 \text{ mm.} \qquad \underline{\sigma_y} = \sqrt{\beta_y \varepsilon_y} \qquad \underline{\sigma_y} = \sqrt{\varepsilon_y \varepsilon_y} \qquad \underline{\sigma_y} = \sqrt{\varepsilon_y} \qquad \underline{\sigma_y} = \varepsilon_y$
$\begin{array}{c} \mathcal{B}_{3} = -\frac{S^{2}}{\mathcal{B}_{y}^{+}} \qquad $
$= \frac{\int \xi_{x} \cdot \kappa \cdot \rho_{y} \star}{\int \xi_{x} \cdot \kappa \cdot \rho_{y} \star} \qquad \qquad$
$= \frac{\sqrt{2 \times 10^{-9} \times 0.003 \times 0.001}}{1.5 + \frac{1}{2} \times 1.7} \frac{\beta_{1/20}}{50}$
~ 2.35 ~ ~ ~ ~ ~

Thanks to Jianwei's discussion.

- Toy MC is done. (1000 events with different acceptance)
- Momentum emittance, energy spread and acceptance of HPGe detector are considered.
- Geant4 Model of Ge.

ESTIMATION OF EVENT RATE

Head-to-head collision:

0.4

0.3

0.2

0.1

-0.5

0.0

0.5

Event rate should be as much as @BEPC-II.

120GeV

1.0

cost

ESTIMATION OF EVENT RATE

- Xangle~3.12 collision:
 - Event number:

$$N = \sigma_T \cdot \iiint \rho_i \cdot \rho_e \, dx \, dy \, dz$$

BEPC-II~5× 10³²; CEPC~ 200× 10³²

 ho_{e_bepcII}

• $\frac{Event \ rate \ @CEPC}{Event \ rate \ @BEPC-II} = \frac{1}{17}$. (How to Increase laser power?)

SUMMARY: BEM @ CEPC

- Measure lepton position after scattering;
 - New Simulation with MadX to take B field fluctuation into account.
- Measure photon energy after scattering.
 - Check all calculation.
 - MC simulation.
 - Background (synchrotron radiation, etc.)? Signal-to-noise ratio?

