Mixed electroweak-QCD corrections to $e^+e^- \to HZ$ at Higgs factories

Department of modern physics University of Science and Technology of China

Qingfeng SUN

2016/11/30 (Beijing)

arXiv:1609.03995 In collaboration with Feng Feng(CUMT), Yu Jia(IHEP), Wen-long Sang(SWU)

2016/11/30 1 / 23

A = A = A

- **2** Previous NLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha)$
- **3** Our recent NNLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha \alpha_s)$
- Oetailed techniques and results
- **5** Summary and outlook

- **2** Previous NLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha)$
- **3** Our recent NNLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha \alpha_s)$
- 4 Detailed techniques and results
- **5** Summary and outlook

- The e^+e^- Higgs factory is an ideal place to test the property of Higgs Boson in Standard Model and to seek the hint of new physics.
- Three next-generation e^+e^- colliders have been proposed to serve as Higgs factory: International Linear Collider (ILC), Future Circular Collider (FCC-ee), and Circular Electron-Positron Collider (CEPC).
- CEPC can measure production cross section for $\sigma(ZH)$ to very high precision.
- Knowing the NLO electroweak correction (a few percent) to $e^+e^- \rightarrow HZ$ is not sufficient to meet experimental precision.
- NNLO corrections to $e^+e^- \rightarrow HZ$ should be considered, which include $\mathcal{O}(\alpha^2)$ and $\mathcal{O}(\alpha\alpha_s)$. The latter is obviously dominant, so we will calculate it.

< 回 > < 三 > < 三 >

Various Higgs production mechanism at lepton colliders.

As is seen, the Higgsstrahlung process $e^+e^- \rightarrow HZ$ is dominant in e^+e^- colliders at low energy. Its contribution is much more important than that of WW and ZZ fusion mechanism.

- **2** Previous NLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha)$
- **3** Our recent NNLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha \alpha_s)$

4 Detailed techniques and results

5 Summary and outlook

Previous NLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha)$

The $\mathcal{O}(\alpha)$ corrections to $e^+e^-\to HZ$ have been calculated independently by three groups:

- J. Fleischer and F. Jegerlehner, Nucl. Phys. B 216 (1983) 469.
- B. A. Kniehl, Z. Phys. C 55 (1992) 605.
- A. Denner, J. Kublbeck, R. Mertig and M. Bohm, Z. Phys. C 56 (1992) 261.

Fig. 15. The relative corrections to the differential cross section for different polarizations of the Z-boson and different CMS energies

7 / 23

Table 1. Weak corrections to the total cross section in the α - and G_{μ} - parametrization	√s/GeV	200	500	500	1000	1000	1000	2000	2000	2000
	$M_{H}/\text{GeV} \ \delta_{\text{weak}} \ \delta_{\text{weak}}^{G_{u}}$	100 6.9 - 1.8	100 4.2 -4.5	300 6.9 -2.6	100 -2.2 -10.8	300 -2.5 -12.0	800 26.1 15.8	100 -11.5 -20.2	300 -12.8 -22.3	800 11.2 0.9
							a >	< ≣⇒	・画	三日
Qingfeng SUN (USTC)	$\mathcal{O}(\alpha \alpha_{\circ})$ c	orrections	to e^+	$e^- \rightarrow$	HZ				2016/1	1/30

- **2** Previous NLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha)$
- **3** Our recent NNLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha \alpha_s)$
- 4 Detailed techniques and results
- **5** Summary and outlook

Typical higher order Feynman diagrams to Higgsstrahlung

 $\ensuremath{\underline{8}}$: LO diagram for $e^+e^- \to HZ$, together with some representative higher-order diagrams.

Representative diagrams for the radiative corrections to the renormalized eeZ vertex, γ/Z self-energy, and $ZZH/\gamma ZH$ vertex, through $\mathcal{O}(\alpha\alpha_s)$. The cross represents the quark mass counterterm in QCD, cap denotes the electroweak counterterm in on-shell scheme.

At $\mathcal{O}(\alpha \alpha_s)$ 2-loop level, there are totally 47 master integrals.

- **2** Previous NLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha)$
- **3** Our recent NNLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha \alpha_s)$
- Oetailed techniques and results
- **5** Summary and outlook

We renormalize the UV divergences with on-mass-shell scheme. Related references:

- A. Sirlin, Phys. Rev. D 22, 971 (1980).
- A. Denner, Fortsch. Phys. 41, 307 (1993).

The top quark mass appears in internal top quark propagators and the $Ht\bar{t}$ Yukawa vertex, which is renormalized in on-shell scheme as:

$$\delta m_t = -m_t \Gamma(1+\epsilon) \left(\frac{4\pi\mu^2}{m_t^2}\right)^{\epsilon} \frac{C_F}{4} \frac{\alpha_s}{\pi} \frac{3-2\epsilon}{\epsilon(1-2\epsilon)}.$$

Related counterterms at $\mathcal{O}(\alpha \alpha_s)$:

 δZ_e , δM_Z^2 , δM_W^2 , δM_H^2 , δZ_{ZZ} , $\delta Z_{\gamma Z}$ and δZ_H

We adopt the so-called $\alpha(0)$ scheme where $\alpha(0) = 1/137.035999$. The charge renormalization constant Z_e (defined by $e^0 = Z_e e$) in $\alpha(0)$ scheme is expressed as:

$$\begin{split} \delta Z_e \Big|_{\alpha(0)} &= \frac{1}{2} \Pi^{\gamma\gamma}(0) - \frac{s_W}{c_W} \frac{\Sigma_T^{\gamma Z}(0)}{M_Z^2} \\ &= \frac{1}{2} \Delta \alpha_{had}^{(5)} \left(M_Z^2\right) + \frac{1}{2} Re \Pi^{\gamma\gamma(5)} \left(M_Z^2\right) + \frac{1}{2} \Pi_{rem}^{\gamma\gamma}(0) - \frac{s_W}{c_W} \frac{\Sigma_T^{\gamma Z}(0)}{M_Z^2}, \end{split}$$

where $\Delta\alpha_{had}^{(5)}(M_Z^2) = 0.02771$ represents the non-perturbative hadronic contributions to the running effect of the electroweak coupling and $\Pi_{rem}^{\gamma\gamma(5)}(0)$ is the remaining possible photon vacuum polarizations from other charged SM particles.

Qingfeng SUN (USTC)

G (CoV)		LO (fb)	NLO	Weak (fb)	NNLO mixed EW-QCD (fb)					
VS (Gev)		$\sigma^{(0)}$	$\sigma^{(\alpha)}$	$\sigma^{(0)} + \sigma^{(\alpha)}$	$\sigma_{eeZ}^{(\alpha\alpha_s)}$	$\sigma_Z^{(\alpha\alpha_s)}$	$\sigma_{\gamma}^{(\alpha\alpha_s)}$	$\sigma^{(\alpha\alpha_s)}$	$\sigma^{(0)} + \sigma^{(\alpha)} + \sigma^{(\alpha\alpha_s)}$	
240	Total	223.14	6.90	230.03	0.83(7)	1.58(14)	0.008(1)	2.42(21)	232.45(21)	
	L	88.67	3.29	91.96	0.33(3)	0.63(5)	0.003(1)	0.96(8)	92.92(8)	
	Т	134.46	3.61	138.07	0.50(4)	0.95(8)	0.005(1)	1.46(13)	139.53(13)	
250	Total	223.12	6.34	229.46	0.83(7)	1.57(14)	0.009(1)	2.41(21)	231.87(21)	
	L	94.30	3.42	97.72	0.35(3)	0.66(6)	0.004(1)	1.02(9)	98.74(9)	
	Т	128.82	2.92	131.74	0.48(4)	0.91(8)	0.005(1)	1.39(12)	133.13(12)	
500	Total	53.22	1.23	54.45	0.18(3)	0.15(2)	-0.003(1)	0.33(3)	54.78(5)	
	L	41.50	1.52	43.02	0.14(2)	0.12(2)	0.001(1)	0.26(4)	43.28(4)	
	Т	11.72	-0.29	11.43	0.04(1)	0.03(1)	-0.004(1)	0.07(1)	11.50(1)	

The (un)polarized Higgsstrahlung cross sections at $\sqrt{s} = 240$ GeV, 250 GeV and 500 GeV. We enumerate the NLO weak corrections, together with the NNLO electroweak-QCD $\mathcal{O}(\alpha \alpha_s)$ corrections.

Replacements:

$$\begin{split} \delta Z_e \Big|_{\alpha(M_Z^2)} &= \delta Z_e \Big|_{\alpha(0)} - \frac{1}{2} \Delta \alpha(M_Z^2). \\ \alpha(M_Z^2) &= \alpha(0) \left[1 + \Delta \alpha(M_Z^2) \Big|_{\text{fermionic}} + \dots \right] = \frac{\alpha(0)}{1 - \Delta \alpha(M_Z^2) \Big|_{\text{fermionic}}}. \\ \text{with } \alpha(0) &= 1/137.035999 \\ \alpha(M_Z^2) &= 1/128.933 \\ \Delta \alpha(M_Z^2) \Big|_{\text{fermionic}} &= \Delta \alpha_{had}^{(5)}(M_Z^2) + \Delta \alpha(M_Z^2) \Big|_{\text{lepton}} = 0.05913. \\ \text{The } \Delta \alpha(M_Z^2) \Big|_{\text{fermionic}} \text{ above represents the fermionic contribution to the running effect of the } \alpha. \end{split}$$

	LO	NLO	NNLO		
$240{\rm GeV}$	252.07	228.67	231.56		
250 GeV	252.04	227.97	230.87		
500 GeV	60.12	54.04	54.44		

 ${\ensuremath{\overline{\ensuremath{\overline{\ensuremath{\mathbb{R}}}}}}\xspace}$. Numeric Results in $\alpha(M_Z^2)$ scheme at various energy.

 $\mathcal{O}(\alpha \alpha_s)$ corrections to $e^+e^- \to HZ$

2016/11/30 17 / 23

Polarized differential cross sections:

 \mathbb{R} : Differential polarized cross sections for Higgsstrahlung at $\sqrt{s} = 240$ GeV at various level of perturbative accuracy. The green band indicates the QCD uncertainty due to varying the renormalization scale from M_Z to \sqrt{s} .

Unpolarized differential cross sections:

19 / 23

- **2** Previous NLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha)$
- **3** Our recent NNLO work on $e^+e^- \rightarrow HZ$ at $\mathcal{O}(\alpha \alpha_s)$
- 4 Detailed techniques and results
- **5** Summary and outlook

- We revisit the $\mathcal{O}(\alpha)$ NLO correction with modern accuately measured parameters and and find the NLO correction is about 3.1% at 240 GeV.
- We calculate the $\mathcal{O}(\alpha \alpha_s)$ NNLO corrections and find the NNLO corrections sizable, about 1.1% at 240 GeV, well above the projected experimental sub-percent accuracy for the $\sigma(ZH)$ measurement.
- To meet such an exquisite experimental precision, it might even be relevant to further address the two-loop $\mathcal{O}(\alpha^2)$ NNLO corrections or even the three-loop $\mathcal{O}(\alpha \alpha_s^2)$ NNNLO corrections.
- The ISR(Initial State Radiation) effects have to be considered carefully to meet the experimental requirements.

• More detailed error estimation

From the updated data of review of particle physics: $M_W = 80.385 \pm 0.015$ $M_t = 173.21 \pm 0.51 \pm 0.71$ $M_H = 125.09 \pm 0.21 \pm 0.11$ $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02764 \pm 0.00013$ etc...

the uncertainty of the mass of Higgs boson will affect theoretical prediction because its mass will appear in the two-body phase space factor.

Thanks for your attention!