Status of ECAL Optimization Study

Ji-feng Hu, Jing Li, Prof. Hai-jun Yang, Liang Li INPAC, SJTU

Outline

- Why ECAL optimization matters?
- How to make optimizations
- Preliminary results
 - Basic performance
 - Physics benchmarks
- To do list

Why ECAL optimization matters?

• Both physics goals and budgets require geometry optimization.

• ECAL and HCAL are two essential components for gamma/lepton/jets reconstruction and identification.

Software Version and Samples

- Software versions,
 - Simulation: Mokka-08-03 revised
 - Reconstruction: Arbor_KD_3.3 plus track-related processors
 - Digitization : G2CDArbor
- Samples,
 - e^-/γ single particle, energy@5,10,20,50,100 GeV
 - $ee \rightarrow ZH \rightarrow ll\gamma\gamma @\sqrt{s} = 250 \ GeV$, 1000 Events
 - $ee \rightarrow ZH \rightarrow ll \, lvqq @\sqrt{s} = 250 \, GeV$, 1E5 Events
- Geometry: cepc_v1 using SiW in ECAL,
 - Cell size @ 1X1, 5X5, 10X10, 20X20 mm
 - Number of layers @ 16, 20, 26, 30
 - fixed total material.
 - other sub-detectors taken by default.

ECAL and HCAL Simulation Chains

ECAL Setup

Parts	Thickness (mm)	Absorber (mm)	Dimension (mm)	Cell size (mm^2)
Barrel	5.25 (L0-19) 7.35 (L20-29)	2.1 4.2	R, 1843 -2028 Z, 0.00-2350	5.08x5.08
Endcap	5.25 (L0-19) 7.35 (L20-29)	2.1 4.2	R, 226.8-2088 Z, 2450-2635	5.08x5.08

2016/11/29

Zoom in Side View (ROOT Geo)

Relative Energy Resolution

- More layers, better energy resolution
- Energy resolution almost is independent of cell size.

• Some new parameters values for Arbor.

2^C0

Cell Size (mm)

Analysis Logic of Higgs→WW

Higgs→WW→lvqq

100000 events

- (Left), Z mass, (red) line indicates the nominal mass.
- (Right), the recoiling mass, $M = \sqrt[2]{E^2 (\vec{p}_{l1} + \vec{p}_{l2})^2}$, lepton 1 and lepton 2 are coming from Z.

Background Suppression

- Cut A, M(Z) in (68.98, 113.38) GeV, approximately within 3 sigma region of Z pole mass. Recoiling M(H) within (120, 160) GeV, Angle of two jets >0;
- Cut B, cut A plus number of isolated lepton >=1, its energy >5 GeV (energy threshold needs be discussed).
- Other backgrounds are under investigation.

Summary

- SiW ECAL optimization was preliminarily studied.
 - 4 X 4 combinations of geometry were tested.
 - Physics channels of Higgs $\rightarrow \gamma \gamma$, WW are being thoroughly investigated
 - Conclusions will be made after fine digitization development.
- To do list,
 - Jet Energy Resolution in HCAL
 - Benchmark of H->WW with background analysis.

Acknowledge

Thanks to Man-qi Ruan, Gang Li, Li-bo Liao, Dan Yu, Shi Chen, Bing Liu, Chen-dong Fu etc. for their helpful discussions and supports.

ECAL Geometry (16 Layers)

 (Right) Invariant mass of di-jets. (red) line indicates W nominal mass, (blue) line the Higgs nominal mass. The Higgs peak is contributed by the leading lepton of virtual W decays mixing in jets reconstruction. Higgs and real W peak mass are a little larger than their nominal mass, which tells not well fined calibration.

Zoom in Side View (ROOT Geo)

