Forward-Backward Asymmetry in Process

$$
e+e->\mu+\mu-
$$

Li Mengran

IHEP Beijing

28 November 2016

Table of Contents

- Introduction
- Previous Measurements and CEPC Expectation
- Motivation
- Distribution of $\cos \theta$ in $e+e->\mu+\mu-$
- $A_{F B}$ Calculation
- Summary

Introduction

- Weak Mixing Angle $\left(\theta_{w}\right)$ is the angle by which spontaneous symmetry breaking rotates the original W_{0} and B_{0} vector boson plane, producing as a result the Z_{0} boson, and the photon.

$$
\binom{\gamma}{Z^{0}}\left(\begin{array}{cc}
\cos \theta_{w} & \sin \theta_{w} \\
-\sin \theta_{w} & \cos \theta_{w}
\end{array}\right)\binom{B^{0}}{W^{0}}
$$

- It also gives the relationship between the masses of the W and Z bosons: $\cos \theta_{W}=\frac{m_{W}}{m_{Z}}$

Previous Measurements and CEPC Expectation

The resonance parameters measured at LEP are:

- $M_{Z}=(91.1885 \pm 0.0031) \mathrm{GeV} / \mathrm{c}^{2}$
- $\gamma_{z}=(2.4951 \pm 0.0043) \mathrm{GeV}$
- $\sigma_{\text {had }}^{0}=(41.559 \pm 0.058) n b$
- combining the three lepton flavours, $R_{I}=20.725 \pm 0.039$
- $\sin \theta_{\text {eff }}^{\text {lept }}=0.23153 \pm 0.00016$

Expectation on CEPC:

- stat error:0.02\%.
- systematic error:0.01\%

Motivation

- Cross section for reaction $e+e->I+I-$ is expected to be:

$$
\frac{d \sigma}{d \cos \theta} \propto\left(1+\cos ^{2} \theta+\frac{8}{3} A_{F B} \cos \theta\right)
$$

where θ is defined as angle between incoming electron and outgoing $\mu-$ (Shown in the bottom picture.)

- It shows asymmetry between forward and backward on first order $\frac{8}{3} A_{F B} \cos \theta$.
- I choose five energies, which are exactly z mass, z mass -4 GeV , z mass -2 GeV , z mass +2 GeV and z mass +4 GeV .
- At each energy point,I generated 10000 Monte Carlo Events, using seed from Madgraph website.It's a small number, for I'm concentrate on modify the code and it could be much faster with few events. I can try more events if necessary.

Distribution of $\cos \theta$ in $e+e->\mu+\mu-$

Yellow:z pole -4 Red:z pole -2 Cyan:z pole Green:z pole +2 Purple:z pole +4

$A_{F B}$ Calculation

$$
\frac{d \sigma}{d \cos \theta} \propto\left(1+\cos ^{2} \theta+\frac{8}{3} A_{F B} \cos \theta\right)
$$

define $\sigma_{+}=$

$$
\int_{0}^{\frac{\pi}{2}}\left(1+\cos ^{2} \theta+\frac{8}{3} A_{F B} \cos \theta\right) d \cos \theta
$$

define $\sigma_{-}=$

$$
\int_{0}^{\frac{\pi}{2}}\left(1+\cos ^{2} \theta+\frac{8}{3} A_{F B} \cos \theta\right) d \cos \theta
$$

then $A_{F B}=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}$

$A_{F B}$ Calculation

$E_{c m s}(\mathrm{Gev})$	$A_{f b}$
86 Gev	-0.3250 ± 0.0002
88 Gev	-0.1474 ± 0.0002
90 Gev	0.0364 ± 0.0002
92 Gev	0.211 ± 0.0002
94 Gev	0.355 ± 0.0002

Note: The error above just contains statistics uncertainty.

Summary

- In Forward-Backward Asymmetry process $e+e->I+I-$, the formula of scattering distribution is:

$$
\frac{d \sigma}{d \cos \theta} \propto\left(1+\cos ^{2} \theta+\frac{8}{3} A_{F B} \cos \theta\right)
$$

where $\cos \theta$ is defined as angle between incoming electron and outgoing negative lepton.

- Draw plots of polar angle distribution of $\mu \mu$. $\mu \mu$ events show a significant forward-backward asymmetry.
- Calculate $A_{F B}$.

