EW precision measurement at Z pole

Zhijun Liang
 IHEP

Z pole physics in pre-CDR

- Some study on expected precision based on extrapolation from LEP results.
- No full simulation study yet

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_{Z}	2 MeV	0.5 MeV	Z lineshape	$>150 \mathrm{fb}^{-1}$
m_{W}	33 MeV	3 MeV	$Z H(W W)$ thresholds	$>100 \mathrm{fb}^{-1}$
$A_{F B}^{b}$	1.7%	0.15%	Z pole	$>150 \mathrm{fb}^{-1}$
$\sin ^{2} \theta_{W}^{\text {eff }}$	0.07%	0.01%	Z pole	$>150 \mathrm{fb}^{-1}$
R_{b}	0.3%	0.08%	Z pole	$>100 \mathrm{fb}^{-1}$
N_{ν} (direct)	1.7%	0.2%	$Z H$ threshold	$>100 \mathrm{fb}^{-1}$
N_{ν} (indirect)	0.27%	0.1%	Z lineshape	$>150 \mathrm{fb}^{-1}$
R_{μ}	0.2%	0.05%	Z pole	$>100 \mathrm{fb}^{-1}$
R_{τ}	0.2%	0.05%	Z pole	$>100 \mathrm{fb}^{-1}$

Z pole physics: Plan for CDR

- Study Physics Requirement for accelerator
- Z mass
- Weak mixing angle
- W mass
- Requirement for detector
- Z->bb branching ratio (R_b)
- Z->cc branching ratio (R_c)

Plan for Weak mixing angle

- More details in Mengran's talk

Truth distribution
 From Z fitter

Physics Requirement for accelerator

- Expected Beam momentum scale uncertainty
- CEPC pre-CDR : 500keV ($10^{10} \mathrm{Z}$)
- FCC-ee : 100keV (10^{13} Z)
- Requested by FCC-ee experts to do more study
- Propagate beam momentum scale uncertainty to all EW measurement.
- Give a clear physics requirement to accelerator

								Correlations				
	m_{Z}	Γ_{Z}	$\sigma_{\mathrm{had}}^{0}$	R_{ℓ}^{0}	$A_{\mathrm{FB}}^{0, \ell}$							
$\chi^{2} /$ dof $=172 / 180$		ALEPH										
$m_{\mathrm{Z}}[\mathrm{GeV}]$	91.1893 ± 0.0031	1.000										
$\Gamma_{\mathrm{Z}}[\mathrm{GeV}]$	2.4959 ± 0.0043	0.038	1.000									
$\sigma_{\mathrm{had}}^{0}[\mathrm{nb}]$	41.559 ± 0.057	-0.092	-0.383	1.000								
R_{ℓ}^{0}	20.729 ± 0.039	0.033	0.011	0.246	1.000							
$A_{\mathrm{FB}}^{0, \ell}$	0.0173 ± 0.0016	0.071	0.002	$0.001-0.076$	1.000							

W Mass measurement

- Two methods for W mass measurement
- WW threshold scan (beam momentum uncertainty)
- Requested by FCC/ILC experts at ICHEP2016
- Direct measurement in ZH runs in WW->lvjj events
- Jet energy scale/resolution uncertainty
- beam momentum uncertainty

WW threshold scan by LEP

Mij \& Mlv, Scaled

Candidate of branch mark channel at Z pole

- Requirement on CEPC beam momentum uncertainty
- Weak mixing angle and Z mass, semi-fullsim
- W Mass (threshold scan), Z fitter level study
- Requirement on TPC detector occupancy (track efficiency)
- Weak mixing angle
- Requirement on pixel detector optimization (impact parameter)
- Z->bb branching ratio ($\mathrm{R} _$b) , need fullsim
- Z->cc branching ratio (R_c)
- Requirement on calorimeter (Jet energy scale/resolution) - W mass (direct method) , fullsim
- Requirement on calorimeter (granularity, taulD)
- Z-> tautau branching ratio

Summary

- Lots of work for Z pole physics CDR study.
- Aim for publication of CEPC Z pole physics prospect in one year.
- Lots of room for contribution
- We need your contribution!

