EW precision measurement at Z pole

Zhijun Liang IHEP

Z pole physics in pre-CDR

- Some study on expected precision based on extrapolation from LEP results.
- No full simulation study yet

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z lineshape	$> 150 \text{ fb}^{-1}$
m_W	33 MeV	3 MeV	ZH(WW) thresholds	$> 100 {\rm ~fb^{-1}}$
A^b_{FB}	1.7%	0.15%	Z pole	$> 150 {\rm ~fb^{-1}}$
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z pole	$> 150 {\rm ~fb^{-1}}$
R_b	0.3%	0.08%	Z pole	$> 100 {\rm ~fb^{-1}}$
N_{ν} (direct)	1.7%	0.2%	ZH threshold	$> 100 {\rm ~fb^{-1}}$
N_{ν} (indirect)	0.27%	0.1%	Z lineshape	$> 150 \ {\rm fb}^{-1}$
R_{μ}	0.2%	0.05%	Z pole	$> 100 {\rm ~fb^{-1}}$
$R_{ au}$	0.2%	0.05%	Z pole	$> 100 {\rm ~fb^{-1}}$

Z pole physics: Plan for CDR

- Study Physics Requirement for accelerator
 - Z mass
 - Weak mixing angle
 - W mass

- Requirement for detector
 - Z->bb branching ratio (R_b)
 - Z->cc branching ratio (R_c)

Plan for Weak mixing angle

• More details in Mengran's talk

Physics Requirement for accelerator

- Expected Beam momentum scale uncertainty
 - CEPC pre-CDR : 500keV (10¹⁰ Z)
 - FCC-ee : 100keV (10¹³ Z)
- Requested by FCC-ee experts to do more study
- Propagate beam momentum scale uncertainty to all EW measurement.
- Give a clear physics requirement to accelerator

		Correlations					
	$m_{ m Z}$	$\Gamma_{\rm Z}$	$\sigma_{ m had}^0$	R^0_ℓ	$A_{ m FB}^{0,\ell}$		
$\chi^2/{ m dof} = 172/180$		ALEPH					
$m_{\rm Z} [{\rm GeV}] 91.1893 \pm 0.0031$	1.000						
$\Gamma_{\rm Z} [{\rm GeV}] = 2.4959 \pm 0.0043$	0.038	1.000					
$\sigma_{\rm had}^0 [{\rm nb}] = 41.559 \pm 0.057$	-0.092	-0.383	1.000				
R_{ℓ}^{0} 20.729 ± 0.039	0.033	0.011	0.246	1.000			
$A_{\rm FB}^{0,\ell}$ 0.0173 ± 0.0016	0.071	0.002	0.001 -	-0.076	1.000		

W Mass measurement

- Two methods for W mass measurement
 - WW threshold scan (beam momentum uncertainty)
 - Requested by FCC/ILC experts at ICHEP2016
 - Direct measurement in ZH runs in WW->lvjj events
 - Jet energy scale/resolution uncertainty
 - beam momentum uncertainty

Candidate of branch mark channel at Z pole

- Requirement on CEPC beam momentum uncertainty
 - Weak mixing angle and Z mass , semi-fullsim
 - W Mass (threshold scan), Z fitter level study
- Requirement on TPC detector occupancy (track efficiency)
 Weak mixing angle
- Requirement on pixel detector optimization (impact parameter)
 - Z->bb branching ratio (R_b) ,need fullsim
 - Z->cc branching ratio (R_c)
- Requirement on calorimeter (Jet energy scale/resolution)
 W mass (direct method), fullsim
- Requirement on calorimeter (granularity, tauID)
 Z-> tautau branching ratio

Summary

- Lots of work for Z pole physics CDR study.
- Aim for publication of CEPC Z pole physics prospect in one year.
- Lots of room for contribution
- We need your contribution !