

Higgs recoil analysis and Higgs width measurement

Zhenxing CHEN (PKU & IHEP) Manqi Ruan (IHEP)

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Outline

Introduction

Recoil mass method and Higgs width determination

- Monte Carlo Simulation
- Recoil mass analysis at CEPC ZH cross section and Higgs mass measurement
- Higgs width measurement at CEPC
- Summary
- Experience on paper publication

Recoil mass

- CEPC will work at 240-250 GeV
- Higgs boson production: **ZH**(dominant), WW fusion, **ZZ** fusion

- Well known initial states at an e⁺e⁻ collider
- In ZH, the leptonic decay of Z boson can be well reconstructed
- Recoil mass:

$$m_{\text{recoil}}^2 = (\sqrt{s} - E_{f\bar{f}})^2 - p_{f\bar{f}}^2 = s - 2E_{f\bar{f}}\sqrt{s} + m_{f\bar{f}}^2$$

• Higgs mass and ZH cross section can be determined in a model-independent way

Higgs width determination

- The Higgs width is a sensitive probe for BSM. Γ_H~4 MeV in SM, it is impossible to make a direct measurement due to limited detector resolution
- An indirect measurement at e⁺e⁻ collider:
- Strategy I: with $\sigma(ZH)$ and BR(H \rightarrow ZZ) limited statistics(BR(H \rightarrow ZZ)~2.3% in SM)

$$\Gamma_H = \frac{\Gamma(H \to ZZ^*)}{\mathrm{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\mathrm{BR}(H \to ZZ^*)}$$

Strategy II: with a series of measurements including $\sigma(ZH)$, $\sigma(vvH, H\rightarrow bb)$, $\sigma(ZH, H\rightarrow bb)$, $\sigma(ZH, H\rightarrow WW)$

$$\Gamma_H = \frac{\Gamma(H \to bb)}{BR(H \to bb)}$$

 $\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}bb) \propto \Gamma(H \to WW^*) \cdot \mathrm{BR}(H \to bb) = \Gamma(H \to bb) \cdot \mathrm{BR}(H \to WW^*)$

$$\Gamma_H \propto \frac{\Gamma(H \to bb)}{\mathrm{BR}(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}bb)}{\mathrm{BR}(H \to bb) \cdot \mathrm{BR}(H \to WW^*)}$$

Monte Carlo Simulation

Generator: Whizard 1.95 (with ISR, Luminosity: 5ab⁻¹, M_H=125 GeV)

Background: 2-fermion (lepton or quark pairs) 4-fermion (WW, ZZ, Single W and Single Z) Chin. Phys. C 40 (2016) 033001

A validation with ZZ background sample

Recoil mass analysis: Z→e⁺e⁻ or µ⁺µ⁻

Model-Independent: only information from Z boson decays an inclusive measurement

Model-Dependent: SM assumption \rightarrow reduced background and improved $m_{\rm H}$ precision

with a 0.16% beam energy spread

Channel	Δσ(ZH)/σ(ZH)	Δm _H (MI)	Δm _H (MD)
e⁺e⁻	1.49%	19.2 MeV	13.1 MeV
µ⁺µ⁻	0.92%	6.5 MeV	5.4 MeV

Measurement of ZH(H→ZZ*)

see Yuqian's talk

5.4% (*TLEP: 4.3%*)

Combined

Measurement of ZH(H→bb)

4500-4000-

3500-3000-

2500-2000-

1500-1000-500-

1200

1000

800-

600-

400-

200

CC

e¹⁸8Jd & 5d & 8.10 0 0.0.0.0.0.0.0.0.0.0.0.0.9 2

SM bkg

see Yu's talk

Based on an analysis of Higgs decaying to 2 jets

Precision extracted from a template fit on flavor tagging information

Z→	Δσ(ZH, H→bb)/σ(ZH, H→bb)	
e⁺e⁻	1.3%	
µ⁺µ⁻	0.9%	
VV	0.3%	
qq	0.4%	
Combined	0.2%	

bb

Higgs bkg

35000-

30000-

25000-

20000-

15000-

10000-

5000-

800-

700

600

500

400

300

200

100-

total

elestore of the state of the st

gg

E888 688 68 8.10 0 0.0.20.20.40.50.60. 70.80.9F

10000

8000-

6000-

4000-

2000

20000-

18000-16000-

14000

12000-

10000-

8000 6000 4000

2000

Measurement of vvH(H→bb)

- $\sigma(vvH)/\sigma(ZH) \sim 10^{-2}$
- Recoil mass of 2 jets: limited discriminating power
- main background: $ZH(Z \rightarrow vv, H \rightarrow bb)$ (interference ignored)

 $\Delta\sigma(vvH, H\rightarrow bb)/\sigma(vvH, H\rightarrow bb)$: 2.8%

Fast simulated, consistent with preliminary full simulation

Measurement of ZH(H→WW*)

Higgs width determination

Strategy I:

Strategy II:

$$\Gamma_{H} = \frac{\Gamma(H \to ZZ^{*})}{\mathrm{BR}(H \to ZZ^{*})} \propto \frac{\sigma(ZH)}{\mathrm{BR}(H \to ZZ^{*})}$$
$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{\mathrm{BR}(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}bb)}{\mathrm{BR}(H \to bb) \cdot \mathrm{BR}(H \to WW^{*})}$$

σ(ZH)	0.50%	
Decay mode	Cross section precision	Branching ratio precision
ZH, H→bb	0.21%	0.54%
ZH, H→WW	1.6%(// <i>LC: 1.1%</i>)	1.7%(// <i>LC: 1.2%</i>)
ZH, H→ZZ	5.4% (TLEP: 4.3%)	5.4% (TLEP: 4.3%)
vvH, H→bb	2.8%	-

- Higgs total width:
 - ✓ Strategy I: 5.4% (*TLEP: 4.4%*)
 - ✓ Strategy II: 3.3% (*ILC: 3.1%*)

Combined: 2.8% (with extrapolation: 2.6%)

Summary

- Based on 5 ab⁻¹ full simulated (part of backgrounds are fast simulated) MC samples at the CEPC, the results of benchmark analysis are presented
- ✓ Using the recoil mass method, the ZH cross section is determined in a model-independent way, with a precision of 0.50%. Meanwhile, the precision of Higgs mass is 5.0 MeV
- ✓ Based on the measurements of $\sigma(ZH)$, $\sigma(ZH, H\rightarrow bb)$, $\sigma(vvH, H\rightarrow bb)$, $\sigma(ZH, H\rightarrow WW)$, $\sigma(ZH, H\rightarrow ZZ)$, the relative precision of Higgs width is determined to be 2.8%

Experience on paper publication

Cross Section and Higgs Mass Measurement with Higgsstrahlung at the CEPC submitted to CPC

Author	Journal Decision
2016-01-21 submitted	2016-02-13 Major Revision
2016-03-29 submitted revision	2016-05-05 Major Revision
2016-06-21 submitted revision	2016-07-11 Minor Revision
2016-08-09 submitted revision	2016-09-13 Major Revision
2016-10-25 submitted revision	2016-11-14 Accept

Key point: Mature result Well organized (discussion on the systematic control) Clear description

Thanks for your attention!