

CEPC-SPPC Physics-Software Meeting H->bb/cc/gg Branch Ratio Measurement in CEPC

Yu Bai (from Southeast University, Nanjing) On Behalf of CEPC Physics-Software Study Group November 28, 2016

Introduction: Benchmark Physics Process Measurement Overview

Physics Motivation

- Crucial to understand EW mechanism
 - Reason of fermions mass
 - Is there only one higgs boson?

- CEPC is ideal for such measurement
 - Clean background
 - Utility of recoil mass, free of higgs decay channel
 - High luminosity

One of the benchmark measurement in CEPC

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH ightarrow \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{ m T})\sim 2 imes 10^{-5}$
$H \rightarrow \mu^+ \mu^-$	$BR(H \rightarrow \mu^+ \mu^-)$		$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \rightarrow b\bar{b}, c\bar{c}, gg$	BR($H \rightarrow b\bar{b}, c\bar{c}, gg$)	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H o q q, \ V V$	${ m BR}(H o q q, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3$ – 4%
$H ightarrow \gamma \gamma$	$BR(H \rightarrow \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%~({ m GeV})$

Excellent flavor tagging capability required

Introduction: Signal Process

- ZH->II+jj (Zhenxing Chen)
 - ZH production with Z decay to muon pair, H decay to bb/cc quark or gluon pair
 - Very clean signal in muon pair invariant mass and recoil mass
- ZH->vv+jj(Yulei Zhang, Dikai Li, Hao Liang, Yu Bai)
 - Via ZH(~86%) or WW fusion(~14%)
 - Clean background
- ZH->Multi-jet (Boyang Li, Yu Bai)
 - Both Z and Higgs decay hadronically
 - Much larger cross section than semi-leptonic channel

Integral luminosity of 5000 fb⁻¹ is assumed in these study, corresponding to that of a few years of CEPC running

Upgrade Since Last Software-Physics Meeting

• Data set and event selection:

- nnh: full simulation sample
- Ilh: higher performance with more variables
- qqh: add complete set of qq sample, bug fixed

• Template fit:

• Non higgs background fixed in fit

• Combination:

• Combine the template fit in nnh, Ilh and qqh channel

Analysis Outline

Event Preselection

Dominant Background Discriminator	vvH Channel	IIH Channel	qqH Channel
Dominant Background	WW/ZZ->semi-lep, quark pair production, Other Higgs Process	ZZ semi-lep, Other Higgs Processes	WW/ZZ hadronic, quark-pair production
Discriminator	Missing Energy, Jets pair invariant/recoil masses, jet multiplicity(yth- value).	Jet multiplicity, jet paring(invariant mass and angular distribution)	
Flavor Tagging	LC Ter	FIPlus: MVA flavor weig mplate fit or other metho	ht, ods

The outcome currently interpreted in terms of $\sigma \times br$ with statistic uncertainty

ZH->II+jj Channel

Also add $\cos \theta_z$ cut and y23-y34 cut

lcos $\theta_z l < 0.78$ for ee channel and 0.85 for mumu channel

y23(y34) < 0.362(0.012) for ee channel and 0.365(0.012) for mumu Channel

Results of Event Selection

	signal	higgs bkg	non-higgs bkg
ee channel	9.15(9.42)k	1.10(1.87)k	6.15(11.1)k
$\mu\mu$ channel	12.8(16.5)k	1.48(3.34)k	6 5.29(7.81)k

vv+jj Channel, Datasets and Event Pre-selection

Datasets:

Full simulated signal and leading backgrounds(background dominantly simulated by arbor v1 or v2_1)

> Generator: Whizard, Simulation arbor Major SM background are with qqln, qqnn and qq events

Event Pre-selection:

- Number of particles(PFO) >=20
- Visible Energy between 110 and 150 Ge
- Isolated electron and isolated muon veto
- y_{12} between 0.15 and 1.0, y_{23} <0.06, y_{34} <0.008
- $\cos \theta$ between -0.98 and -0.4,
- BDT Cut(redone at 0.07)

Event yields after Cut flow

Full Sim Results								
Sig	Sig h_bkg							
85.8k	85.8k 1.96k							
	Fast Sim Results							
Sig	Sig h_bkg							
76.6k	1.59k	5.31k						

Signal and background	normalized ~ 5000/
fb	

Signal yields: 85.8k, background: 24.84k

Realistic: template fit can be applied to leading bkg

Background

10940

	Signal
> 0.165	6293

Much better than ILC Results: Likelihood ratio

7

LR

Multi-jets Channel

Majority decay FS in HZ production Large Statistics

Datasets:

- Main background: Irreducible background from WW/ZZ and quark pair process
- Full simulation sample used
- Quark pair sample are filtered due to its huge cross section and low rate to passing the event selection

With 4 jets in final states, which two jets should be used to do template fit (from higgs) is *not* straightforward.

Event Selection and Cut flow

筛选条件	四喷注组合 并去除轻子	可见能量 >206GeV	y ₃₄ > 0.007	喷注粒子 数>9	Δθ > 0.92	X>0.2 1	BDT>-0.19
所有信号	493947	459972	393979	371240	318163	236652	211281
信号-bb	413299	381470	325137	305982	1 1 0 3	197510	177447
信号一cc	19362	18690	15976	14903	12610	9562	8324
信号-gg	61286	59812	52866	50375	42745	29580	25510
所有背景	75M	50.6M	26.414	214.1	13.55M	3.15M	1.52M
希格斯背景	299534	109529	100813	82281	71987	38579	32653
四费米子强 子衰变	36.83M	28.19M	21 3 N	18.78M	12.16M	2.2M	1.08M
两夸克	23.86M (250M)	20.37M	5.207M	2.601M	1.315M	907188	405567
四费米子半 轻子衰变	14. 72 M	1. 70%	218394	27487	4745	3012	580

See Boyang's talk with detail in last physics-software meeting

After event selection, the dominant background are WW/ZZ hadronic decay

```
Better than ILC Results: Likelihood ratio LR > 0.375 13726 166807
```

Template Fit and ToyMC Results(Old)

Template Fit and ToyMC Results

Combination

parameter list: 4*NChannel + NBackground*NChannel+2

	normalization factor	bb	CC	1-bb-cc(gg)	free	
	NChannel		2	2+NChani repeat	meters, nnel	
	background yields	eff	iciencies	for bb/cc/gg in	each channel fixed	
B	ackground*NCha	annel	3NC	hannel		1

r_{qq :} σ×Br_{qq} =bb * normalization factor

bb/cc/gg and backgrounds template for each channel

template list:

Also tried to add higgs background template in the fit. But the result is not good. Might due to very low hbkg efficiency and statistics.

Summary

- H->bb/cc/gg from $\mu\mu$ H, IIH and qqH is about to finish
 - ZH->II+jj, analysis with all SM background and apply more cuts to enhance signal/background ratio and reduce statistic uncertainty
 - In vv+jj channel, full simulation SM background have been used
 - In qqH->4jets channel, complete background are used(no significant change)
- ToDo
 - Understand why IIH accuracy dropped

nnH Cutflow - I

	Signal	nnH_bkg	swsl_qq(very low stat.)	ww_sl_tauq	ww_sl_mu_up	sznu_nu_up	sznu_up_dow n	zz_sl_un_up	zz_sl_nu_dow n
FSClasser	167500	71934	13200	7.11162M	7.12766M	282392	459391	411970	678581
NPFO	167340	41980	12390	7.02154M	6.97721M	238738	415782	361059	620419
E Total	149683	33269	2098	3.02259M	762195	95492	154312	173698	277824
рТ	139539	31022	1962	2.57739M	57739M 715799 87556 141266		141266	159322	254937
IsoLep Veto	138620	27472	692	2.23187M	218486	87004	140018	158243	252739
M_invariant	132206	25703	341	1.31696M	39686	9409	13771	17122	24247
M_recoil	123733	24379	241	1.0477M	17897	8423	12230	15675	22241
y12	123016	23738	232	965445	16640	8281	11960	15376	21788
y23	124133	13240	128	639871	11117	6641	9284	12428	16729
y34	105451	5608	112	531096	9584	6097	8472	11447	15300
$\cos \theta_{jj}$	102186	5078	87	302146	5598	5032	6821	9258	11927
BDT>0.07	82371	1927	1	6637	285	630	931	1097	1609

nnH Cutflow - II

	ww_cuxx	bbrad	ccard	ssrad	uurad	ddrad	bbnonrad	ccnonrad	ssnonrad
FSClasser	1.70919M	234349	267377	291697	296770	291253	218209	236130	267998
NPFO	1.70918M	230511	255381	277154	274663	278266	217751	235012	264488
E Total	15749	154918	185070	211359	208697	214986	4894	3205	2865
Tq	2663	820	357	155	50	76	944	296	184
IsoLep Veto	2646	811	355	155	50	76	937	294	184
M invariant	1181	87	74	59	20	31	644	186	94
M_recoil	1104	66	57	34	9	20	538	152	61
v12	1089	66	56	34	9	19	527	151	54
v23	388	53	48	34	9	18	464	140	47
v34	141	51	48	34	9	18	458	139	46
$\cos heta_{ii}$	92	34	27	7	4	5	344	117	26
BDT>0.07	1	1	0	0	0	0	68	10	0

-							
	uunonrad	ddnonrad	bbfilter	ccfilter	ssfilter	uufilter	ddfilter
FSClasser	258736	267416	728308	1.09601M	788760	1.11429M	794210
NPFO	255376	264585	728291	1.09597M	788562	1.11405M	794032
E Total	2300	2535	10739	7366	4126	4275	3892
Та	75	126	2055	810	278	163	220
IsoLep Veto	75	126	2040	807	278	163	220
M invariant	40	70	1336	540	178	102	138
M recoil	21	36	1184	459	113	57	82
v12	18	34	1136	441	103	52	74
v23	13	22	760	310	77	36	53
v34	12	20	646	275	61	28	34
$\cos heta_{ii}$	7	14	526	239	40	14	23
BDT>0.07	0	0	91	23	4	0	2

nnH Cutflow -III

	eeh_bb	eeh_cc	eeh_gg	eeh_bkg	mumuh_b b	mumuh_c c	mumuh_g g	mumuh_b kg	tautauh_b b	tautauh_c c	tautauh_g g	tautauh_b kg
FSClasser	55058	2514	8815	29354	54974	2579	7994	28422	57909	2742	8537	31089
NPFO	55050	2513	8813	20360	54895	2567	7990	19984	57906	2742	8536	22272
E Total	6	0	0	237	86	3	4	291	5792	186	471	4417
рТ	4	0	0	214	25	1	0	247	4421	147	396	3415
IsoLep	0	0	0	10	2	0	0	1	3911	134	381	1777
M_invariant	0	0	0	6	1	0	0	1	2390	79	207	1231
M_recoil	0	0	0	5	1	0	0	1	2225	75	197	1034
y12	0	0	0	5	1	0	0	1	2218	75	194	1018
y23	0	0	0	4	1	0	0	1	1818	59	144	510
y34	0	0	0	4	1	0	0	0	1408	46	107	177
$\cos heta_{ii}$	0	0	0	4	1	0	0	0	1333	44	102	150
BDT>0.07	0	0	0	0	0	0	0	0	380	8	38	4
	C	ldh_pp	qqh_cc	c qql	h_gg	qqh_bkg	nnh_	bb	nnh_cc	nnh_c)g r	nnh_bkg
FSClasse	er 4	17960	19411	61	462	223861	1404	472	6547	2048	1	71934
NPFO	4	17960	19411	61	462	223602	1403	333	6531	2047	6	49180
E Total		85	1		2	16429	1239	909	6105	1966	9	33269
рТ		31	0		0	14389	1154	498	5695	1834	6	31022
IsoLep Ve	to	31	0		0	10416	114	594	5691	1833	5	27472
M_invaria	nt	8	0		0	7716	1086	663	5530	1801	3	25703
M_recoi		7	0		0	7072	1010	089	5278	1736	5	24378
y12		7	0		0	6973	1005	535	5261	1722	0	23738
y23		5	0		0	4967	918	27	4832	1423	4	13240
y34		3	0		0	3092	883	68	4648	1243	5	5608
$\cos heta_{ii}$		3	0		0	2670	856	70	4524	1199	2	5078
BDT>0.0	7	2	0		0	357	698	20	3029	9522	2	1927

eeH Cutflow -I

	signal	sze_sl_dd	sze_sl_uu	zzsl_tau_u p	zzsl_tau_d own
FSClasser	48263	57803	74325	490	861
$\cos heta_{H}$	38859	27065	31876	287	530
Mee_invariant	38226	4613	4791	67	113
M _{ee_recoil}	36475	3516	3459	24	38
Mjj_invariant	26747	1190	1223	2	5
y23&y34	25389	1033	1085	2	4

eeH Cutflow -II

	eeh_bb	eeh_cc	eeh_gg	eeh_bkg	mumuh_ bb	mumuh_ cc	mumuh_ aa	mumuh_ bka	tautauh_ bb	tautauh_ cc	tautauh_ aa	tautauh_ bka
FSClasse r	40544	1819	5900	255110	1	0	0	150	191	12	28	550
cos $ heta_{H}$	32625	1455	4779	19984	1	0	0	126	155	11	23	436
Mee_invariant	32081	1432	4713	18264	0	0	0	63	9	0	0	123
M _{ee_recoil}	30563	1380	4532	16794	0	0	0	38	5	0	0	65
Mjj_invariant	22387	1025	3335	5371	0	0	0	0	5	0	0	7
y23_y34	21441	983	2965	3058	0	0	0	0	5			4

	qqh_bb	qqh_cc	qqh_gg	qqh_bkg	nnh_bb	nnh_cc	nnh_gg	nnh_bkg
FSClasser	0	0	0	1588	0	0	0	282
$\cos heta_{H}$	0	0	0	1286	0	0	0	211
$M_{ee_invariant}$	0	0	0	578	0	0	0	108
Mee_recoil	0	0	0	324	0	0	0	76
M _{jj_invariant}	0	0	0	87	0	0	0	0
y23_y34	0	0	0	56	0	0	0	0

mumuH Cutflow -I

	signal	zz_sl_mu_ down	zzsl_mu_u p	zzsl_tau_u p	zzsl_tau_d own
FSClasser	60414	185637	112410	874	1595
$\cos heta_{H}$	52315	122204	71663	586	1084
$M_{\mu\mu_invariant}$	50548	12946	8226	105	180
M _{µµ_recoil}	49433	10711	6849	53	86
Mjj_invariant	40523	3303	2491	5	6
y23&y34	38595	2946	2229	5	5

mumuH Cutflow -II

	eeh_bb	eeh_cc	eeh_gg	eeh_bkg	mumuh_ bb	mumuh_ cc	mumuh_ aa	mumuh_ bka	tautauh_ bb	tautauh_ cc	tautauh_ aa	tautauh_ bka
FSClasse r				241	50753	2355	7306	30052	235	7	31	692
$\cos heta_{H}$				191	40567	1895	5853	23928	181	4	27	546
$M_{\mu\mu_invariant}$	0		60	39170	1837	5673	21369	6	0	0	112	
$M_{\mu\mu_recoil}$			41	38317	1791	5538	20428	4	0	0	69	
Mjj_invariant				1	30942	1580	4911	7638	4	0	0	7
y23_y34			1	29771	1514	4380	4123	4	0	0	5	

	qqh_bb	qqh_cc	qqh_gg	qqh_bkg	nnh_bb	nnh_cc	nnh_gg	nnh_bkg
FSClasser				2047	1			245
$\cos heta_{H}$				1640	0		192	
$M_{\mu\mu_invariant}$		0		551	0		83	
$M_{\mu\mu_recoil}$		U		324	0	(73	
M _{jj_invariant}				102	0		0	
y23_y34				69	0			0

qqH Final Cut Results-I

	qqh_bb	qqh_cc	qqh_gg	qqh_bkg	nnh_bb	nnh_cc	nnh_gg	nnh_bkg
Event Number	176478	8256	25244	31810		()	
Weight		1.001	8456					
Event Yields	176830.7	8271.2	25290.6	31868.7		()	

	eeh_bb	eeh_cc	eeh_gg	eeh_bk g	mumuh _bb	mumuh _cc	mumuh _99	mumuh _bkg	tautauh _bb	tautauh _cc	tautauh _99	tautauh _bkg
Event Number	17	0	4	16	1	0	0	0	343	18	111	206
Weight	0.3818478				0.358	36621			0.358	31369		
Event Yields	6.49	0	1.53	6.11		0.358	36621		122.84	6.45	39.75	73.78

qqH Final Cut Results-II

	ww_ccbs	zz/ ww_cscs	zz_dtdt	zz_cc_not s	zz_utut	ww_uusd	ww_ccds	ww_cuxx	zz_uu_not d	zz/ ww_udud	ww_uubd
Event Number	1911	145577	117663	27546	24109	18327	18853	36959	26004	135807	2421
weight	0.2916197	1.8205249	1.0059087	1.0045608	1.0009637	0.9869772	0.9881102	10.032289	1.0042245	1.8232797	0.0025250
Event Yields	557.29	265026.6	118358.2	27671.6	24132.2	18088.3	18628.8	370783.3	26113.9	247614.1	6.11
Sum 4q						1115980.4					

qqH Final Cut Results-III

	bb	CC	SS	uu	dd
Event Number	12844	21828	10911	18712	11326
weight	5.7120374	5.2311774	5.3775161	5.2450895	5.2513599
Event Yields	73365.4	114186.1	58674.1	98146.1	59476.9
Sum 2q			403848.6		

	zz_sl_mu_u p	zz_sl_mu_d own	zz_sl_tau_u p	zz_sl_tau_d own	sze_sl_uu	sze_sl_dd	ww_sl_muq	ww_sl_tauq	sw_sl_qq
Event Number	55	66	132	140	18	17	-	46	-
weight	1.0053624	1.0153959	1.0014406	1.0046875	5.1248076	1.5762269	-	1.0045894	-
Event Yields	55.29	67.02	132.19	140.66	92.25	26.80	-	46.21	-
Sum sl					560.42				

nnH fast cutflow

Cut Definition	Sig.	qq	qqnn	qqln	xxh
FSClasser output	148955	25M	183687	3698817	63194
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	148808	23M	163088	3439927	58882
$110 < E_{\rm total} < 150$	132561	10 M	125878	705357	34215
$P_{T} > 19$	126006	34198	116314	627602	32300
Isolation lepton veto	123586	33775	115867	327206	23773
$100 < M_{\rm inv} < 135$	117845	9506	10420	162511	21277
$70 < M_{\rm rec} < 125$	111886	7521	10045	110426	20458
$0.15 < y_{12} < 1$	111353	7405	9702	101797	19983
$y_{23} < 0.06$	105078	6644	8456	69313	14495
$y_{34} < 0.008$	100117	6504	7878	58532	6899
$-0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	97277	5178	5365	33293	6273
BDT > -0.01	76666	344	118	69	1594
Significance			265.20		
Efficiency			51.5%		

Template Fit in II+jj Channel

Templates and data

Fit target

Full Simulated Higgs and ZZ events

vvH Templates

background

data

MVA in vv+jj channel

Correlation Matrix (signal)

(N)

0.4

