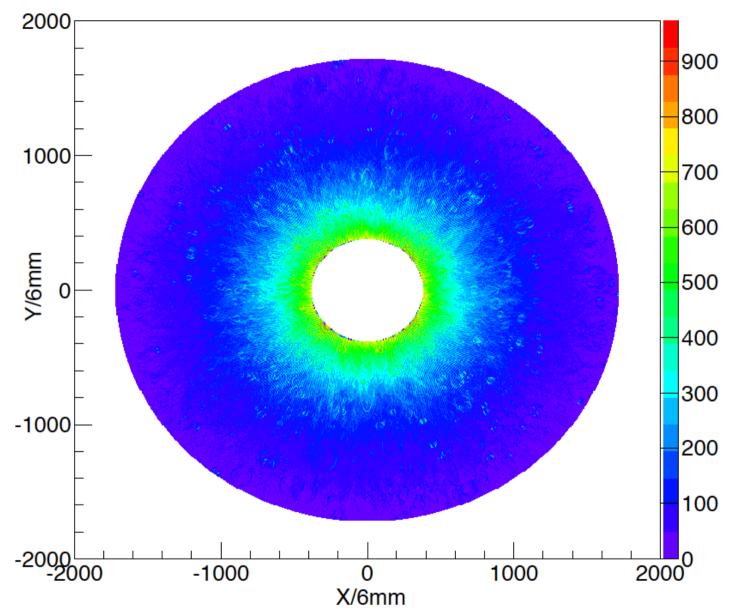
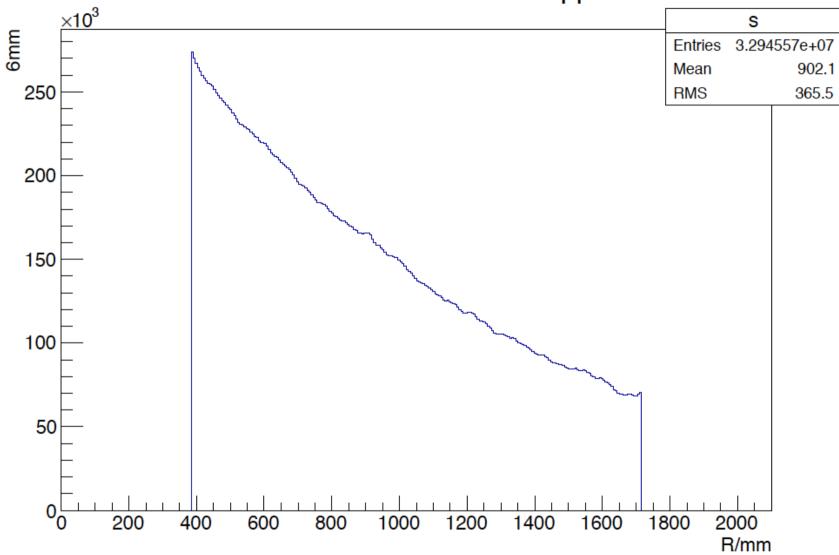
TPC Occupation at CEPC Z

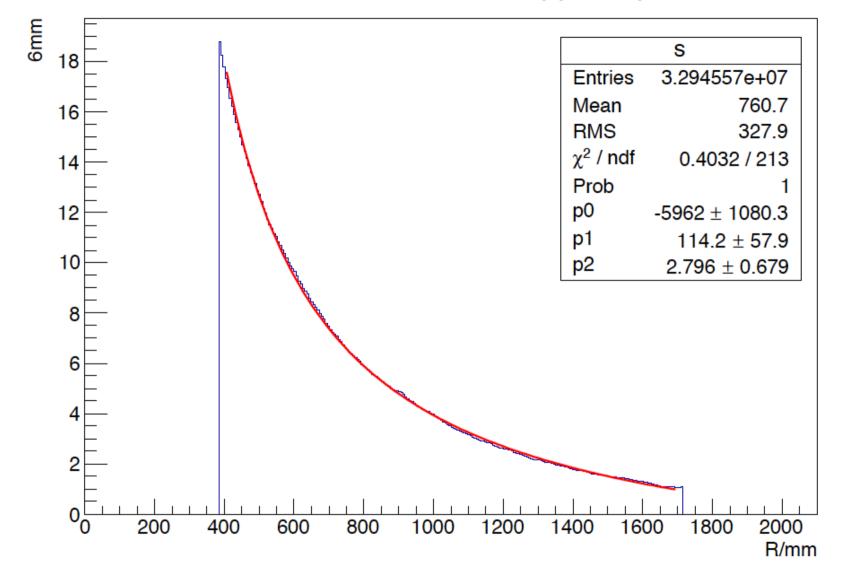
Mangi Ruan


e

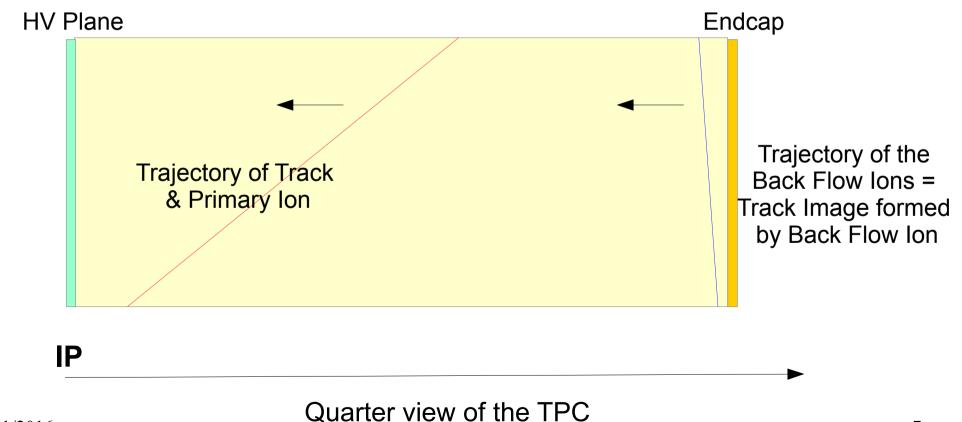

 $T \sim$

1

Input: TPC Hit Profile of Fully Simulated Z->qq events

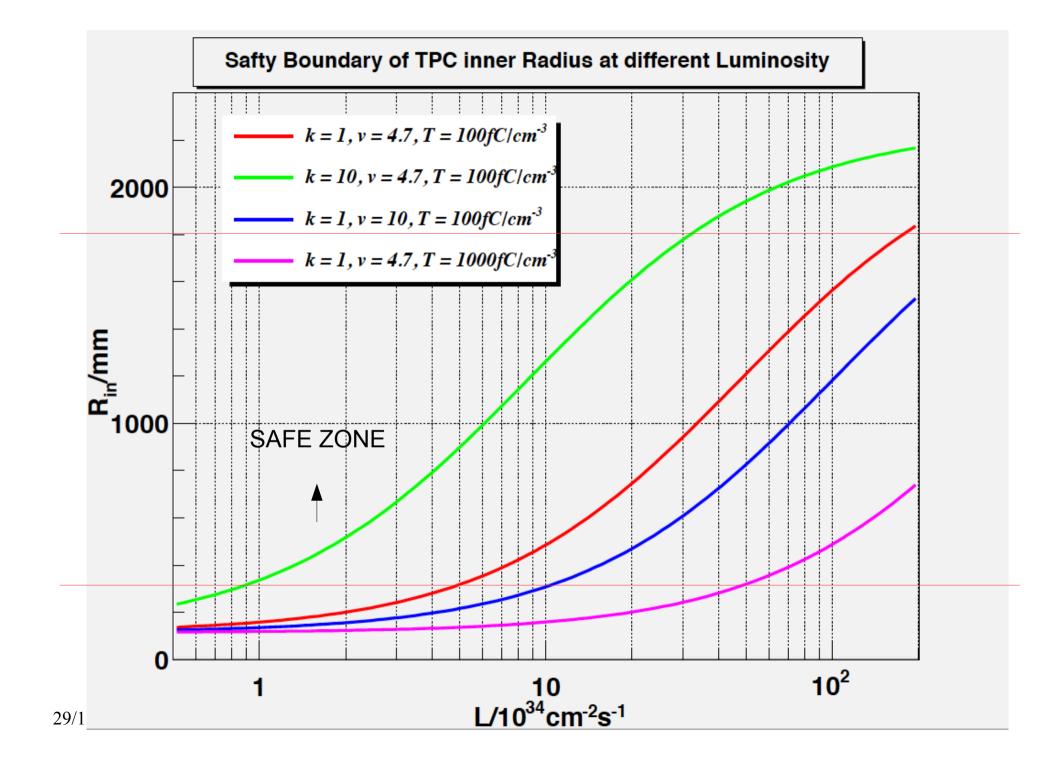

TPC Hit Map of 7500 Z->qq events at Z pole

Radius Profile for 7500 qq events


Hits/mm² for 7500 Z to qq at Z pole

Fit results

- Per 7500 events:
 - Hit Rate = 6000/(x 114) 2.8; (per mm²)
- At Instant Luminosity = 2E34/IP;
 - Event Rate = 600 Hz. (30 nb * 2E-5 $fb^{-1}s^{-1}$)
 - Hit Rate = 480/(x 114) 0.224 (Hz/mm²)
- At Instant Luminosity = 2E36
 - Event Rate = 60000 Hz
 - Hit Rate = 48000/(x-114) 22.4 (Hz/mm²);


1st limit factor: Charge Density

Charge Density

- Charge Density: $\rho(r) = 22^{*}(1+k)^{*}L/v^{*}(480/(r-114) 0.224)$
 - Follows the same distribution to the Hit Density
 - Assume evenly distributed along Z direction
 - Quantity & Units:
 - *ρ*: charge density, unit in fQ/cm³
 - *k: ratio between back flow ion to the primary ionization;*
 - L: Luminosity Unit in 10³⁴cm⁻²s⁻¹;
 - *v*: Drift velocity of ion, unit in m*s⁻¹;
 - r: radius of the TPC test point, for instance TPC inner radius, unit in mm
- Define a tolerance level of Charge Density: T (fQ/cm³)
 - From Fujii San, 100 fQ/cm³ = 5 micrometer distortion (in X-Y plane?...)
 - TPC spatial resolution is 0.1 mm, maybe this limit can be limited to 1000 fQ/cm³
- Then the dependence of T and R (TPC inner radius) can be resolved as:

- $R = 114 + 480/(0.224 + Tv/(22^{*}(1+k)^{*}L))$

2nd limit factor: Voxel Occupancy

Beam Parameter at CEPC Z pole

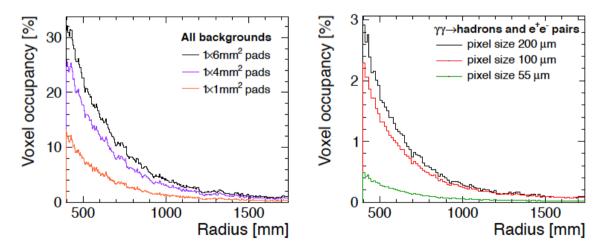
- CEPC Z pole Bunch Structure
 - 40 MHz in phase with TPC readout;
 - 40 M bunches per second; 25 ns separation = 7.5 m separation
 - Luminosity:
 - 2.0 * 10^{34} cm⁻²s⁻¹ = 2 * 10^{-5} fb⁻¹ *s⁻¹
 - Per bunch
 - Integrated Luminosity $5*10^{-13}$ fb⁻¹ = 0.5 mb⁻¹
 - Z->qq events: 30 nb * 0.5 mb⁻¹ = 1.5*10⁻⁵
 - Even if 2E36: 1.5E-3 Z->qq Events per Bunch Xing

Voxel occupancy

- Giving 40 Mhz DAQ rate (25 ns interval) & 80 µm/ns drift velocity, the Distance difference between 2 DAQ rate is:
 - 2 mm ~ (80km/s)
 - 7.5m ~ (300000km/s)
- Therefore the Voxel Volume = 2mm * 1mm * 6mm (in the default design)
- Total N Pixel = pi*(1800**2 330**2)/6 = 3.3E6
- Number of Voxel in one snapshot = 3.3E6 * 1175 = 3.9E9 Voxels;
- Number of Voxel in one second = 3.3E6 * 40 M = 1.32E14 Voxels;
- Number of Hits in one second: Depends on the luminosity:
 - 2E34, 600 qq events, 2.64E6 Hits;
 - 2E35, 6000 qq events, 2.6E7 Hits;
 - 2E36, 60000 qq events, 2.6E8 Hits;
- $_{29/11/2016}^{\bullet}$ Voxel Occupancy: of the order of 1E-8 to 1E-6...

VERY SAFE...

Beam Parameter at CLIC


- CLIC Bunch Structure
 - 0.5ns separation, 312-354 (3/0.5 TeV) bunches/train, 50 Hz (50 trains per second)
 - 1 train = 156 177 ns;
 - All trains = 7800 8850 ns
 - Occupancy = 1.13 1.28 *10⁻⁵
 - Luminosity: 2.3 5.9 * 10³⁴ cm⁻²s⁻¹
 - Luminosity per sec: 2.3 5.9 * 10⁻⁵ fb⁻¹
 - Luminosity per bunch
 - Assume at Z pole: 10 µb⁻¹ per bunch ~ 0.3 Z->qq per bunch
 - 0.5 TeV: 6.5*10⁻⁸ fb⁻¹ = 65 μb⁻¹

• 3 TeV: $1.89*10^{-7}$ fb⁻¹ = 189 µb⁻¹

Parameter	Units	$\sqrt{s} = 500 \text{ GeV}$	$\sqrt{s} = 3 \text{ TeV}$
$f_{\rm rep}$	Hz	50	50
nb		354	312
Δt	ns	0.5	0.5
Ν		6.8 · 10 ⁹	$3.7 \cdot 10^{9}$
σ_x	nm	202	≈ 40
σ_y	nm	2.26	≈ 1
σ_z	μm	72	44
L	$cm^{-2}s^{-1}$	$2.3 \cdot 10^{34}$	5.9 · 10 ³⁴
$\mathscr{L}_{0.01}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	$1.4 \cdot 10^{34}$	$2.0 \cdot 10^{34}$
n_{γ}		1.3	2.1
$\Delta E/E$		0.07	0.28
N _{coh}		$2 \cdot 10^2$	$6.8 \cdot 10^{8}$
$E_{\rm coh}$	TeV	$1.5 \cdot 10^1$	$2.1 \cdot 10^{8}$
Nincoh		8·10 ⁴	3·10 ⁵
E_{incoh}	TeV	3.6·10 ²	$2.3 \cdot 10^4$
n _{Had}		0.19	3.2

Voxel occupancy for CLIC: Validation

- CLIC: 3 gammagamma->Hadrons events per bunch Xing;
- For each bunch train: 1000 events;
- 1000 events -> 4000 tracks -> 800000 hits (Big Assumption), in 150 ns;
- 150 ns * 80 micrometer/ns = 12000 micrometer = 12 mm = 6 separation
- Voxel number in 150 ns:
 - 1.66E6 * 6 = 1E7
- Occupancy = 0.08;
- Inner Vs Outer:
 - Scale = 3 -> 24%.

(a) The voxel occupancy for different pad sizes [4].

(b) The voxel occupancy for different pixel sizes.

Conclusion

- Considering Z->qq sample only
 - Need to considering gammagamma background, etc.
- TPC Usage limited by
 - Local Charge Density that perturbate the Hit position, Tolerance level ~ 100fC/cm3, result in a deviation of 5 micrometer in position resolution
 - Leads to a constrain of TPC inner radius & Integrated luminosity
 - Optimized scenario: Inner Radius > 500 mm at L = 2E36
 - Tolerance = 1000 fC/cm3,
 - Ion Shift velocity: v = 4.7 m/s,
 - Ratio between back flow Ion yield to Primary ionization k = 1;
- Voxel Occupancy (NOT A Limiting Factor)
 - Orders of magnitude lower than the CLIC Case as the beam bunch time structure is much evenly distributed
 - Of the order of 1E-8 to 1E-6 at 2E34 to 2E36 Luminosity, which 40 Mhz bunch separation (25ns = 7.5 m bunch separation)