LICH : A CHARGED PID PROCESSOR

Intro

- Use of very high granularity (SiW-ECAL+SDHCAL, cepc_v1 ~ ILD_o2_v05) + ARBOR
- on final charged PFO's
- internally to identify more charged particles
- Simultaneous PID

PID Variables: tracks

- **dE/dx**: For a track in TPC, the distribution of energy loss per unit of depth follows the Landau distribution.
- The dE/dx of a track used here is actually the **average** of this value but after **vetoing** tails at the two edges of Landau distribution [10%–70%]

PID Variables: Fractal Dim.

- * reveals detailed information of the spatial configuration of the shower
 - α: scale at which the shower is analysed (by grouping hits)
 - * N_{α} : the number of hits at scale α
 - * $R_{\alpha,\beta} = N_{\beta}/N_{\alpha}$: ratio of the number of hits at different scales
 - * $FD_{\beta} = \langle \log(R_{\alpha,\beta}) / \log(\alpha) \rangle_{\beta-150} + 1 \text{ (or FD-1)}$
 - here: FD_10mm
- * Used: FD_ECAL, FD_HCAL, FD_all

PID Variables: Other Calo

* Energy Distribution:

- * the proportion of energy deposit **in ECAL**: **EcalEn**
- * energy deposit in the **first 10 layers** in ECAL: **EEClu_L10**
- energy deposit in a cylinder around the incident direction within a radius of 1 R_M and 1.5 R_M : EEClu_r, EEClu_R
- * Spatial **Hits Information**:
 - * number of layers hit by the shower: ECALHit, HCALHit
 - * number of hits in the first 10 layers of ECAL: NH_ECALF10
 - * the maximum distance between a hit and the helix: MaxDisHel
 - * the **maximum** and **average distance** between a **hit** and **axis of the shower** (defined by the 1st hit and the COG): **maxDisHtoL**, **avDisHtoL**
 - * the **depth of COG**, and the **depth of shower** defined as the **depth** of the **inner most** hit and the **outer most** hit: **graDepth**, **CluDepth**, **MinDepth**

TMVA Correlation Matrix

10GeV Muon(root-6.04)

TMVA BDTG

- * Samples: (e, mu, pi) x (1, 2, 3, 5, 7, 10, 20, 30, 40, 50, 70 GeV) x (10000 events)
- Method: TMVA BDTG selected as
 "best" (vs likelihood, etc.)
- * Catalog: TMVA Value for three catalogs: e, mu, pi
 - * Classification :
 - mvaVal_*>0.5
 - •otherwise"undefined pid" (very rare)

BDTG Value mvaVal_pi for 10GeV pi, e, mu

Migration Matrix

* Probability of * particle tagged as * catalog

	e ⁻ like	μ^- like	π^+ like	undefined
$e^- \ \mu^- \ \pi^+$	$egin{array}{c} arepsilon_e^e \ P_e^\mu \ P_e^\pi \ P_e^\pi \end{array}$	$P^e_\mu \ arepsilon^\mu \ P^\pi_\mu \ P^\pi_\mu$	$P^e_{\pi} \ P^{\mu}_{\pi} \ arepsilon^{\pi} \$	$P^e_{und} \ P^\mu_{und} \ P^\pi_{und}$

* An example of MM

Efficiency & Mis-tagging

• PID efficiency for e, mu, pi at different detector regions

- endcap is the best region (more statistics for low energy)
- combined efficiency: about 98% for pion higher than 3GeV
- muon & electron: even better

Efficiency & Mis-tagging

• PID efficiency for e, mu, pi at different detector regions

CEPC Physics Software Meeting

Marlin Processor

Lepton Identification for Calorimeter with High-granular

Ι	VERBOSE	"MyLICH"]	
I	VERBOSE	"MyLICH"]	
I	VERBOSE	"MyLICH"]	
I	VERBÓSE	"MyLICH"]	
I	VERBOSE	"MyLICH"]	
Ē	VERBOSE	"MyLICH"]	
Ē	VERBOSE	"MyLICH"]	
Ē	VERBOSE	"MyLICH"]	
î.	MESSAGE	"MyLICH"]	
î.	MESSAGE	"MVLICH"]	MvLICH - parameters:
È	MESSAGE	"MyLICH"]	EnergyBins: -1 5 20
Î.	MESSAGE	"HyLICH"]	InputDetectorModules: barrel1 barrel2 overlap endcap
Î.	MESSAGE	"MyLICH"]	InputEnergyPoints: 1 2 3 5 7 10 20 30 40 50 70
î.	MESSAGE	"MyLICH"]	InputMCParticle: MCParticle
ĩ	MESSAGE	"MyLICH"]	InputPFO: ArborPFOs
Î.	MESSAGE	"MyLICH"]	InputPositions: 0 0.3 0.7 0.8 1
Î.	MESSAGE	"MVLICH"]	OutoutPFO: tvoed1PF0s
î.	MESSAGE	"MyLICH"]	TrainingEn: TRAININGEN
È	MESSAGE	"MyLICH"]	TrainingFlag: 0
î.	MESSAGE	"MyLICH"]	TreeOutputFile: /scratchfs/higgs/yudan/Geo/Reco/z e2e2h/E2OL E2Omm H2OL H2Omm/PID e2e2h 01
Ē	MESSAGE	"MyLICH"]	mvacut e: 0.001 0.01 0.01
Î.	MESSAGE	"MyLICH"]	mvacut_mu: 0.1 0.1 0.1
Î.	MESSAGE	"MyLICH"]	mvacut pi: 0.9 0.9 0.9
Î.	MESSAGE	"MyLICH"]	weightDir: /scratchfs/higgs/yudan/SingleParticle/Reco/new lpfo
Ē	MESSAGE	"NVLTCH"]	

*Parameters: InputDectorModules, TrainingFlag, InputEnergyPoints, InputPFO, OutputPFO(TrainingFlag==0), mvacut(TrainingFlag==0), weightDir (TrainingFlag==0), TrainingEn(TrainingFlag==1)

*Step (the first two steps need to be run only once for one PFA and one Geometry):

*Put TrainingFlag to 1 to produce root samples at each energy point

*run TMVA to get weight files

*Put TrainingFlag to 0 and put weightDir as the path of weight files, get identified ReconstructedParticle

• PID efficiency for e, mu, pi at different Ecal N layers

• PID efficiency for e, mu, pi at different Ecal Cell Size

• PID efficiency for e, mu, pi at different Hcal N layers

• PID efficiency for e, mu, pi at different Hcal Cell Size

Physics Events: eeH / µµH

Feynman Diagram

Energy Spectrum

Physics Events

	Geom 1		Geom 2	
	μμΗ	eeH	μμΗ	eeH
Cut _µ	0.1	0.1	0.1	0.1
Cut _e	0.01	0.001	0.01	0.001
ε_E	93.41 ± 0.92	98.64 ± 0.08	91.60 ± 1.02	97.89 ± 0.11
η_E	92.02 ± 1.00	99.74 ± 0.04	89.89 ± 1.10	99.67 ± 0.04
ε_{μ}	99.54 ± 0.05	95.53 ± 0.76	99.19 ± 0.06	86.48 ± 1.26
η_{μ}	99.60 ± 0.04	96.31 ± 0.70	99.83 ± 0.03	95.38 ± 0.81
ε_{event}	98.53 ± 0.13	97.06 ± 0.19	97.24 ± 0.18	95.40 ± 0.24

- * LICH:
 - * An PFA independent PID processor combining tracking & calo informations
- * PID efficiency improved with Arbor PFA:
 - * about 98% for pions higher than 3GeV
 - higher than 99% for lepton identification
 - * Geometry independent
- * Potential:
 - * Add more charged particle catalog
 - * efficiency varies while tmva cut change depending on physics objective

Thank you for your attention! BACKUP

$e2e2h/E30L_E10mm_H48L_H10mm$

	1-5	5-20	>20
cut_mu	0.1	0.1	0.01
cut_e	1E-05	0.01	0.01
eff_mu	52.2399+/-0.9732	85.4064+/-0.8760	99.5359+/-0.0485
pur_mu	29.3015+/-0.6641	80.7334+/-0.9515	99.6019+/-0.0449
eff_E	93.1083+/-0.3358	89.3536+/-0.0071	93.4066+/-0.9197
pur_E	82.7112+/-0.4725	76.228+/-0.9163	92.0162+/-0.9970

$e2e2h/E30L_E20mm_H48L_H20mm$

	1-5	5-20	>20
cut_mu	0.1	0.1	0.01
cut_e	1E-05	0.01	0.01
eff_mu	53.1617+/-0.9709	76.4994+/-1.0489	99.1866+/-0.0636
pur_mu	29.1649+/-0.6550	82.021+/-0.98367	99.8282+/-0.0294
eff_E	86.3915+/-0.4534	78.6056+/-0.0094	91.5989+/-1.0211
pur_E	83.4009+/-0.4834	84.1116+/-0.8723	89.8936+/-1.0994

$e2e2h/E20L_E20mm_H20L_H20mm$

	1-5	5-20	>20
cut_mu	0.1	0.1	0.01
cut_e	1E-05	0.01	0.01
eff_mu	23.3028+/-0.8256	56.3779+/-1.2164	98.8029+/-0.0771
pur_mu	30.0985+/-1.0180	82.7008+/-1.1237	99.6247+/-0.0435
eff_E	84.5979+/-0.4772	77.0022+/-0.0097	92.7577+/-0.9672
pur_E	79.8383+/-0.5153	74.4247+/-0.9977	68.5891+/-1.4895

$e1e1h/E30L_E10mm_H48L_H10mm$

	1-5	5-20	>20
cut_e	1E-05	0.001	0.001
cut_mu	0.1	0.1	0.1
eff_E	95.3145+/-0.27048 8	92.5227+/-0.52146 7	98.6419+/-0.08365 36
pur_E	79.2751+/-0.47314 7	80.2278+/-0.65118 5	99.7439+/-0.03691 69
eff_mu	61.1156+/-0.98008 5	79.8962+/-1.02061	95.5345+/-0.75978 8
pur_mu	22.4233+/-0.50791 2	81.6976+/-0.99576 7	96.3165+/-0.69571

$e1e1h/E30L_E20mm_H48L_H20mm$

	1-5	5-20	>20
cut_e	1E-05	0.001	0.001
cut_mu	0.1	0.1	0.1
eff_E	92.5781+/-0.33441 5	83.1634+/-0.69946	97.8946+/-0.10521 2
pur_E	80.1014+/-0.47377 4	85.9912+/-0.60452 3	99.6702+/-0.04286 22
eff_mu	59.4927+/-0.97732 7	68.9928+/-1.18674	86.4865+/-1.25673
pur_mu	22.333+/-0.508013	82.9114+/-1.05873	95.38+/-0.810377

$e1e1h/E20L_E20mm_H20L_H20mm$

	1-5	5-20	>20
cut_e	1E-05	0.001	0.001
cut_mu	0.1	0.1	0.1
eff_E	91.7082+/-0.34956 6	81.8572+/-0.71554 8	97.166+/-0.12146
pur_E	78.3176+/-0.48273 6	75.1517+/-0.73440 5	98.6953+/-0.08455 13
eff_mu	37.9619+/-0.95708 9	35.0616+/-1.21474	58.9744+/-1.80697
pur_mu	21.8981+/-0.61946	85.6013+/-1.39651	91.6143+/-1.26909

e2e2h/E30L_E10mm_H48L_H10mm

e2e2h/E30L_E20mm_H48L_H20mm

CEPC Physics Software Meeting

e2e2h/E20L_E20mm_H20L_H20mm

CEPC Physics Software Meeting

e1e1h/E30L_E10mm_H48L_H10mm

CEPC Physics Software Meeting

e1e1h/E30L_E20mm_H48L_H20mm

CEPC Physics Software Meeting

e1e1h/E20L_E20mm_H20L_H20mm

