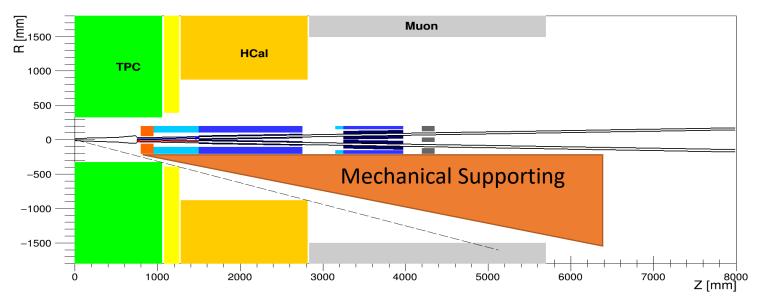

Machine-Detector Interface Status Report

Hongbo Zhu On behalf of the MDI subgroup 4 November 2016

Outline

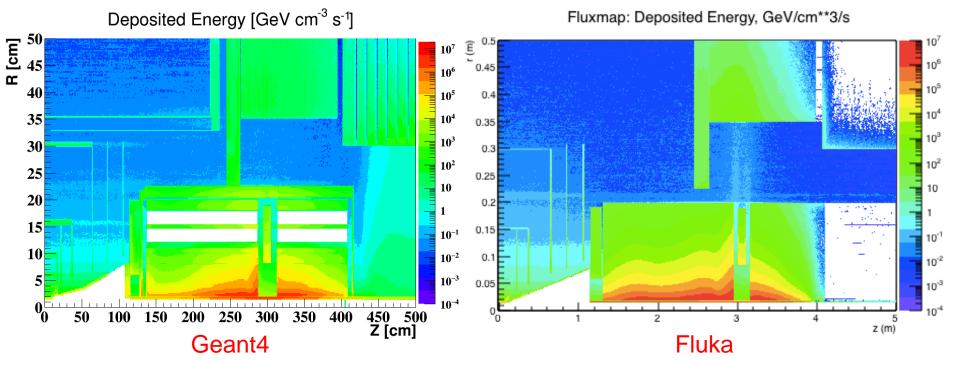

- Interaction region design
- Radiation backgrounds
- Quadrupole and solenoid designs
- Outlook

Interaction Region Design

- Shorter TPC to reduce the impacts of showers introduced by the forward machine elements
- Cone-shaped forward region design to give space for the mechanical support (next slide)
- Weaker solenoid field to shrink the compensating magnet
- Extremely limited space for the luminosity calorimeter

Mechanical Support

- Required space for the mechanical supporting structure: 150 - 300 mrad
- Supporting point ~6 m away from the IP
- Feasibility studies on-going:
 - Stress, deformation and vibration


ELEMENT	WEIGHT (kg)
LumiCal	130
QD0 (Including solenoids)	900
QF1	600
Pump	20

Background without Shielding

Source	Simulation Tool	Sub-Type	Particle Flux at VTX [cm ⁻² BX ⁻¹]	Particle Energy [GeV]	Priority
Synchrotron	Geant4;	Dipole	~ 10 ¹⁰	~ 0.001	***
Radiation	BDSIM	Quadrupole	~ 10 ⁶	~ 0.007	***
Beam	BBBrem;	Radiative Bhabha	~ 10	~ 120	-44-
Lost Particles	SAD	Beam Gas Scattering	↑ (1	**
Poomotroblung	Guinea-Pig++;	Pairs	~ 10 ⁻²	~ 0.05	.
Beamstrahlung	PYTHIA6	Hadrons	~ 10 ⁻⁵	~ 2	*

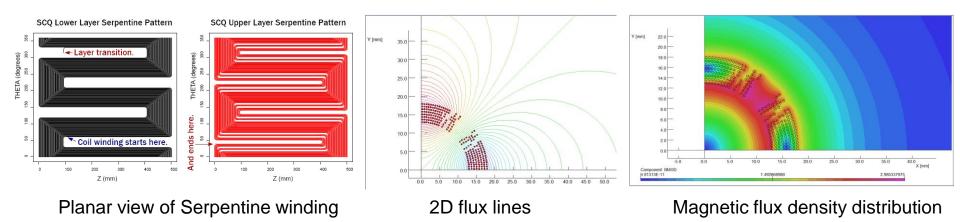

- Software framework to study all beam induced backgrounds fully implemented and well maintained
- Background levels for the single ring design evaluated
- Next step: background levels for the (partial)-double ring

Geant4 vs Fluka: Energy Deposition

- Radiation backgrounds evaluated with both Geant4 and Fluka → almost consistent results
- Implemented geometries still slightly different \rightarrow to be harmonized

Geant4 vs Fluka: NIEL

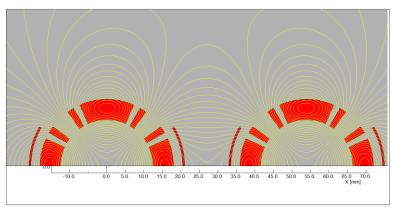
 Noticeable difference of the NIEL distributions (1 MeV neutron equivalent) out of Geant4 and Fluka → to be investigated

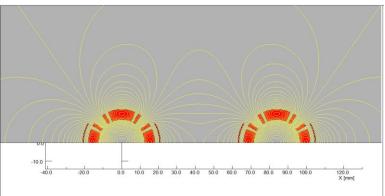

QD0 Design Progress

 Compact and high gradient quadrupole magnets for (partial)-double ring design

Field gradient (T/m)	Magnet length	Field harmonics	Coil inner radius (mm)
200	1.3	B _n /B₂ < 5.0×10 ⁻⁴ @ r=8 mm	12.5

- Minimum distance between two aperture centerlines ~45mm (coil inner radius of 12.5mm) → extremely tight radial space
- Serpentine winding coil using direct winding selected to achieve high efficiency and high compactness (experience from BEPCII)
- Serpentine coil adopted for BEPCII, J-PARC, ATF2, Super-KEKB, ILC baseline design, etc.


QD0 Design Progress cont.

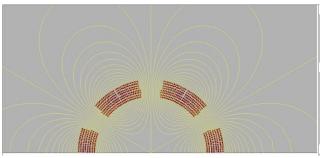


- QD0: small-aperture and long iron-free magnet
- Coils to be made of 0.5 mm round NbTi-Cu conductor using the direct winding technology.
- In total eight Serpentine coil layers (collar not needed)
- 110 coil turns per pole with excitation current of 340A.
- 2D magnetic field calculated: field quality in each aperture satisfying after optimisation

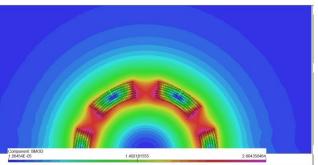
Field Cross Talk

 Significant field cross talk due to the small distance between the two magnets → additional layer of shield coil outside of the quadrupole to improve the field quality (multipole field reduced to below 5 ×10⁻⁴)

QD0 main design parameters


Magnet name	QD0
Field gradient (T/m)	200
Magnetic length (m)	1.3
Coil turns per pole	110
Excitation current (A)	340
Coil layers	8
Conductor size (mm)	NbTi-Cu Conductor, Ø 0.5mm
Stored energy (KJ)	6.0
Inductance (H)	0.11
Peak field in coil (T)	3
Coil inner diameter (mm)	25
Coil out diameter (mm)	44
Coil mechanical length (mm)	1350

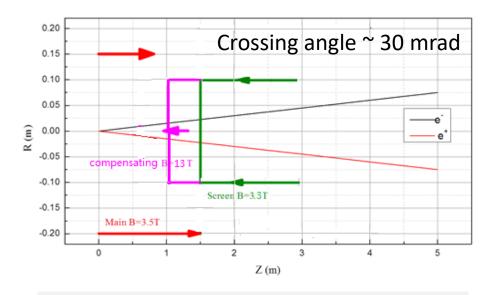
Sextupole Magnet Design


• Requirements:

Strength (T/m ²)	Magnet length	Field harmonics	Coil inner radius (mm)
12800	0.3	$B_n/B_2 < 5.0 \times 10^{-3}$ @ r=12 mm	18

• Eight Serpentine coil layers, 104 coil turns per pole

2D flux lines



Magnetic flux density distribution

Sextupole main parameters

Magnet name	Sextupole magnet	
Field strength (T/m ²)	12800	
Magnetic length (m)	0.3	
Coil turns per pole	104	
Excitation current (A)	300	
Coil layers	8	
Conductor size (mm)	NbTi-Cu Conductor, ∅ 0.5m	
Stored energy (J)	750	
Inductance (H)	0.017	
Peak field in coil (T)	2.9	
Coil inner diameter (mm)	36	
Coil out diameter (mm)	50	
Coil mechanical length (mm)	350	

Compensating/Screening Solenoids

Compensation conditions:

 $B_{main}L_{main}B_{comp}L_{comp=0}$ $L^* = L_{main}L_{comp} = 1.5m$

- To minimize the effects of the longitudinal detector solenoid field on the accelerator beam
- Integral longitudinal field generated by the detector solenoid and solenoid coils should cancel out.
- Screening solenoid (outside of QD0): the longitudinal field inside the quadrupole bore should be 0.
- Compensating solenoid options (before QD0):
 - 1m long, center field: 5.2T (NbTi) \rightarrow 0.7m long, center field: 7.4T (NbTi) \rightarrow 0.4m long, center field: 13T (Nb3Sn)

Outlook

- Expect to receive the first "workable" lattice design for the partial double ring design
- Revise the interaction region design (layout, collimators, mechanical support, etc.)
- Re-evaluate the radiation backgrounds