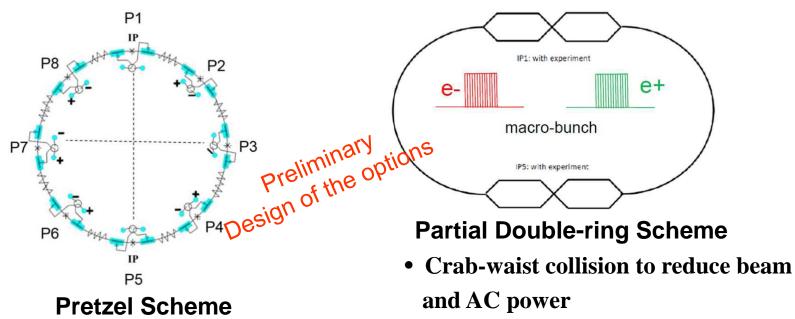
# Status and plan of the hybrid detector module for CEPC TPC

Huirong QI

## Institute of High Energy Physics, CAS


November 4<sup>th</sup>, 2016, CEPC Detector Meeting, IHEP

## Outline

# Critical challenges of CEPC TPC Some activities and progress Plan of some real activities

## **CEPC** and its beam structure

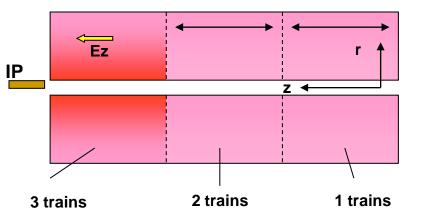
**Circular e<sup>+</sup>e<sup>-</sup> Higgs (Z) factory two detectors**, 1M ZH events in 10yrs  $E_{cm} \approx 240$  GeV, luminosity  $\sim 2 \times 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>, can also run at the Z-pole



- Baseline design in pre-CDR
- 48 bunches / beam
- Colliding every 3.6µs, continuously
- →Power pulsing not applicable

- Avoiding pretzel scheme to increase the flexibility and luminosity
- 196ns bunch spacing
- 48 bunches / train
- Duty cycle: 9.4µs/181µs

- 3 -


## **Critical challenge: Ion Back Flow and Distortion**

## In the case of ILD-TPC

- Distortions by the primary ions at ILD are negligible
- Ions from the amplification will be concentrated in discs of about 1 cm thickness near the readout, and then drift back into the drift volume Shorter working time
- 3 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the 200 ms period used gating system

## In the case of CEPC-TPC

- Distortions by the primary ions at CEPC are negligible too
- More than 10000 discs co-exist and distorted the path of seed electron >10000 trains
- The ions have to be neutralized during the ~4us period continuously



## Amplification ions@ILC



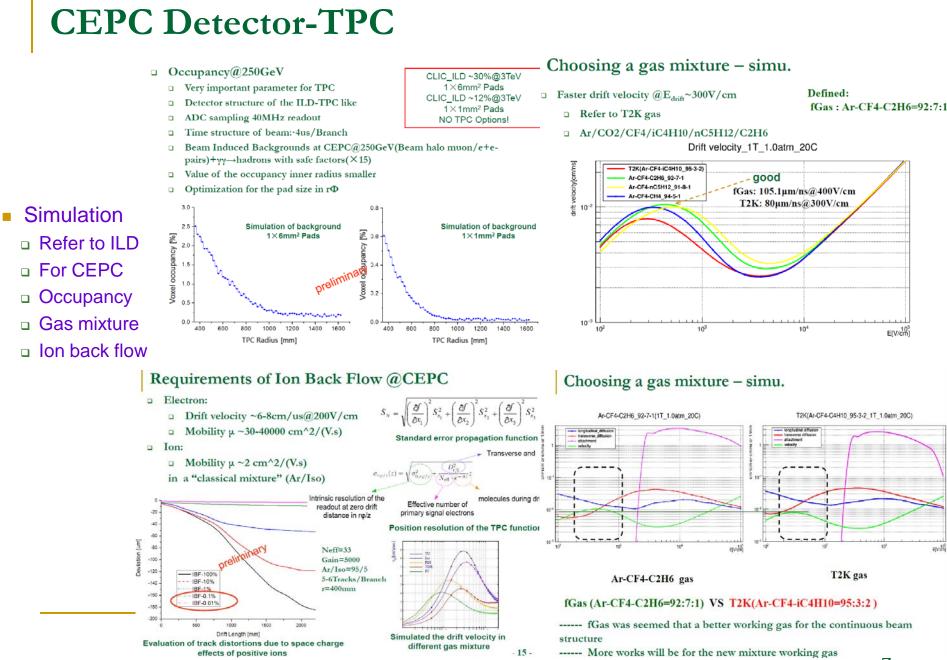
Amplification ions@CEPC


# **Critical challenges of CEPC-TPC**

- Occupancy: at inner diameter
  - □ Low occupancy
  - Overlapping tracks
  - Background at IP
- Ion Back Flow
  - Continuous beam structure
  - Long working time with low discharge possibility
  - Necessary to fully suppress the space charge produced by ion back flow from the amplification gap
- Calibration and alignment
  - Complex MDI design
  - Laser calibration system

2015~2016, some activities for the critical challenges



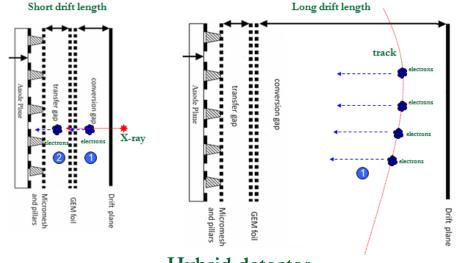

To reduce **IONS** To reduce distortion



- 5 -



Some activities and progressSimulations



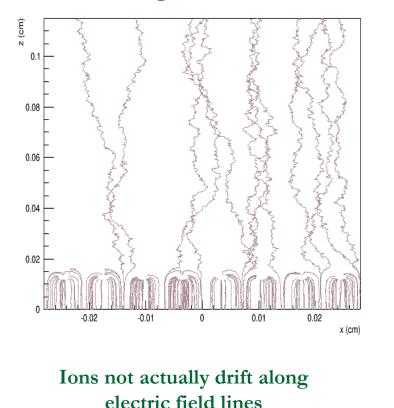

## New ideas for the ions?

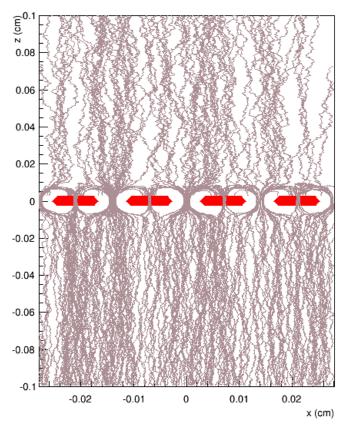
- Our group was asked to "think" on an alternative option for CEPC TPC concept design
- And we did our best ...
- We proposed and investigated the performance of a novel configuration for TPC gas amplification: GEM plus a Micromegas (GEM+Micromegas)
- Hybrid micro-pattern gaseous detector module
- **GEM+Micromegas detector module** 
  - **GEM** as the preamplifier device
  - GEM as the device to reduce the ion back flow continuously
  - Stable operation in long time
  - Low material budget of the module



ANSYS-Garfield++ simulation (0T, Left: ions; Right: electrons)

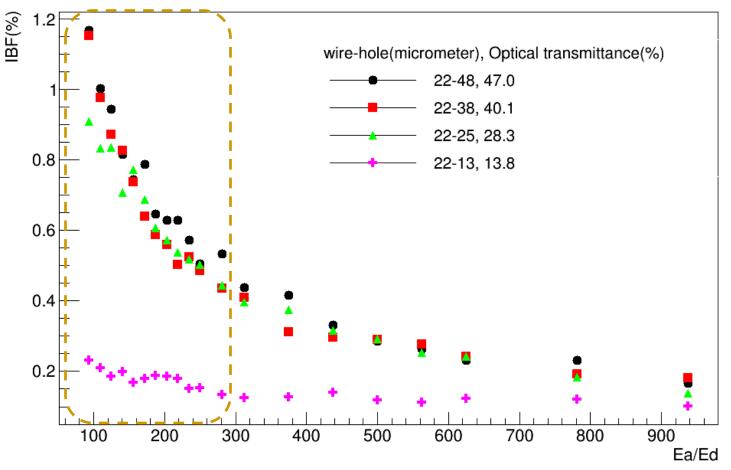



Hybrid detector


## **IBF** simulation

- □ Garfield++/ANSYS to simulate the ions back to drift
  - **GEM and Micromegas Module using ANSYS**
  - **Record** the ions to drift layer, mesh layer, and sensitive layer

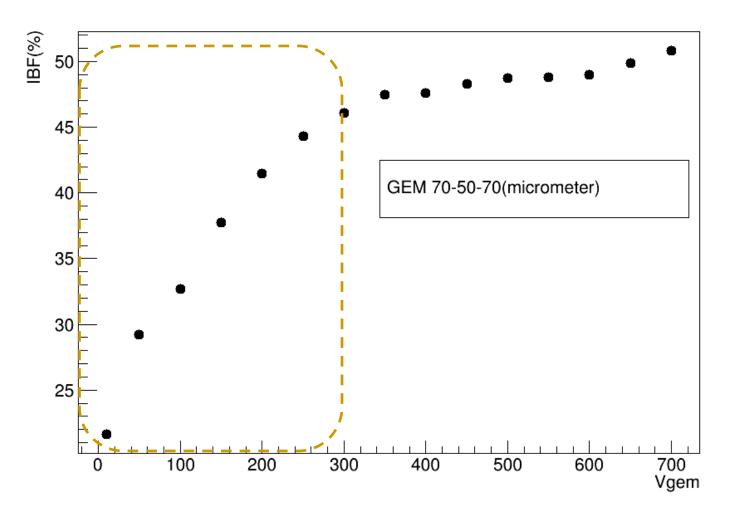
Micromegas standalone


**GEM** Standalone





## **IBF** simulation


- □ Garfield++/ANSYS to simulate the ions back to drift
  - **350LPI/ 420LPI/ 500LPI/ 1000LPI**
  - **Ea is electric field of amplifier of Micromegas**



Electric field of amplifier VS Electric field of Drift

## **IBF** simulation

□ Garfield++/ANSYS to simulate the ions back to drift



• Standard GEM module (70-50-70)

Voltage of the GEM detector

# Some activities and progress

- Experiment
- Collaboration

## **CEPC** Detector-TPC

3%

Minimize the effect of ion backflow in TPC and test the new module





Photo of the GEM+Micromegas Module with X-ray

### Calibrate the tracker using laser and design the prototype



## **CEPC Detector-TPC**

- Promote domestic cooperation and exchanges
- Participate in the international collaboration group (ILC-TPC)

## Participate in the collaboration group

Collaboration for the IBF R&D: CEA Scalay (France) IHEP, Tsinghua Univ. (China)

#### Collaboration for the Beam test with Asia Module:

KEK (Japan) DESY (Germany) IHEP, Tsinghua Univ. (China)

#### Targets:

- R&D of IBF used UV light
  - Goal: ~0.1% IBF, Resistive Micromegas modules, Hybrid modules
- TPC Prototype design with Laser calibration
  - Readout active area: ~200mm<sup>2</sup>, Drift length: ~500mm
- Beam test experiment and data analysis
  - Fixed date: 30,Oct./2016~14,Nov./2016
  - **GEM** module with the field shaper in 1.0 Tesla in **PCMAG**
- Toward CEPC CDR

Aleksan Roy (Saclay) GAO Yuanning (THU) QI Huirong (IHEP)

Keisuke Fujii (KEK)

Schrader, Andrea(DESY)

GAO Yuanning (THU) QI Huirong (IHEP)

#### Some activities for domestic cooperation

#### Communicate meeting

- Tsinghua UniversityIHEP, CAS
- UCAS, CAS
- Lanzhou University
- IMP, CAS
- USTC
- SINAP, CAS
- CIEA
- Shandong University
- SJTU

#### Invited talks

- Saga University
- CEA Saclay
- Korean Mecaro



#### TPC Tracker Detector Technology mini-Workshop

#### CEA-IHEP/Tsinghua meeting ■ 20 Oct 2016, 10:00 → 12:00 Europe/Paris ♥ CEA Videoconference Rooms CEA-IHEP\_Tsinghua\_meeting **10:00** → 10:20 **IHEP/Tsinghua Talk 1** Speaker: Manqi Ruan (Chinese Academy of Sciences (CN)) 🔑 Opti general-Scalay.... **10:20** → 10:40 **IHEP/Tsinghua Talk 2** Speaker: Huirong Qi (IHEP) Satus\_TPC\_for\_Sac... **10:40** → 11:10 Saclay Talk 1 Speaker: Boris Tuchming (CEA Saclay) Minitpc\_uv\_201609... **11:10** → 11:50 **Discussion**

# Plan of some real activities

- Next steps for R&D
- Collaboration

## Next steps: R&D

## The present situation is somewhat clear

- Someworks started ( high priority for Micromegas+GEM, because of excellent backflow suppression)
- The present module are used in several mounting cycles. The new module will be assembled for more test.
- Do we have the resources to switch to a bigger module? (Almost YES) This would take at least ~1 years.
- Pre-R&D projects should be do well in next five years including the TPC prototype.
- All designs and materials would be considered for the beam test in the magnetic field.
- More simulations would be started with some comments from ILC-TPC's experts. (Prof. Fujjii, Paul, Jochen, Sugiyama...)

## Next steps: Collaboration

- Increasing interest and getting more collaboration in IHEP for the hybrid gaseous detector R&D
  - □ Saclay-Tsinghua-IHEP lab activities
  - □ Meeting at Tsinghua/Saclay/IHEP on October 14
  - Real progress in the resistive Micromegas and bulk Micromeags with Saclay
  - Participation in the beam test experiments in DESY-KEK on 1,Nov.~14,Nov.
  - Starting to learning and joining in the analysis for the raw data with Japanese colleagues

On the longer term, R&D should continue on IBF suppression in the MPGD detector

## Summary

# Critical requirements for CEPC TPC modules

- Beam structure
- Continuous Ion Back Flow

## Some activities for the module

- Simulation of the occupancy of the detector, the hybrid structure gaseous detector's IBF
- TPC gas amplification setup GEM+MM investigated as a high rate TPC option
- Some preliminary IBF results
- Some plans in next years

# Thanks very much for your attention !