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Introduction

Jet quenching observables in high-energy nuclear collisions has been
proposed as a good probe of the dense medium produced in these
collisions.

The medium induced photon and gluon radiation has been derived:

e up to twist-4 contribution in deep inelastic scattering (DIS) by HT
formalism;

e through opacity expansion by GLV formalism 1;

Wang? introduced the detailed balance for the gluon radiation within
opacity expansion formalism, where the medium temperature is included.
2 Here we will check the energy loss with detailed balance within twist-4
formalism.

The main motivation is to study the relationship between the jet
transport coefficient § and the local temperature T.

IM. Gyulassy, P. Lévai, I. Vitev, Nucl. Phys. B 594 (2001) 371
2E. Wang, X.N. Wang, PRL 87, 14 (2001)



about Higher Twist

We know that the mass term of the Lagrangian has dimension

[minp] = 4, [m] = 1, the dimension of the ¢ is [¢)] = [¢] = 2, and the
dimension of spin [s;] = [sy] = —3.

Looking at the current tensor from W{*¥, with only ¢ (yo) and (0).
The overall dimension is: [¢] + [¢/] + [s;] + [sy] = 2. Which is called the
twist-2 contribution (leading-twist).

Looking at the current tensor from W(A;gw, with ©(y0), ¥(0), A and

Aa{. We can treat A as F*, such that A4 has the dimension of
[F#F,] = 4. With the bosonic spin [s4] = [s,] = —1. Then the overall
dimension is 2 + [A] + [A] + [s4l + [sg] = 4. Which is called twist-4
contribution.




Photon Radiation

Consider the semi-inclusive process

e(L1) + A(Pa) = e(L2) + q(lg) + (k) + X (1)

e where we've used the light-cone coordinate p = [p™, p~, p.] with
p* = (E+p)/V2.

e The momentum for the virtual photon (v*) is
g=Lr— Ly =[-xgpt,q7,0.], with xg = Q*/(2pTq7).

e Each nucleon in nucleus A has momentum p such that
PA = A[p-‘r’ O, 0]

e and the photon carries a fraction y of the quark’s forward
momentum [;° = yq~.




Photon Radiation cont.

The double differential cross section may be expressed as

c do ac 1. dww ?
2B Ld3l,d3l,  27s Q4 M dBldBl,

e the leptonic tensor is given by

1
L/,LV - 5 Tr[L/ﬂuL/z%/] (3)
e and the semi-inclusive hadronic tensor is define as

Wi =37 (2n)*8%(q + Pa — Px)(AIJ*(0)[X)(X|J*(0)|4)  (4)
X

We will now only pay attention to the hadronic tensor.




leading-twist

The hadronic tensor for photon radiation at the zero-th order (without
scattering with the medium from the quark jet) can be written as:

Awy 42 d*l, - d*l,
W = G [ Gaeni) | Gieni)

/d4y0e’qy°/d4 /d4 // d* ql d4q1

Xe—lql (yo— z)e—lq1 (2 =y e—l/ (z—z )e—ll (z z)

< (AP (o) lq ' ‘/1. 2 4(0)]A)

X Gag(h) (5)




leading-twist cont.
In the high energy and collinear limit, one can use the following
approximation

(AT (o) O(0)14) ~ ACA (pli(0) 5 v (@)l TIS-0]  (6)

where C[f represents the probability of finding a nucleon state with
momentum p in a nucleus with A nucleons (nucleon distribution
function). Also, we have:

100 = [ L e D pli06) S0 0)lp) 1)

where f,(x) represents the parton distribution function of a quark with
flavour g and momentum fraction x. Then the hadronic tensor:

Auv A 4 Qe d?l,, (2m)fy(xe + x1)
Wi = AC Q / /ﬂ/; 8p+ Vo

x Tr[7v“m“%vﬁ v 1Gags(ly)




leading-twist cont.

The trace combined with G, can be carried out by using the
commutation relations of v matrices. Then the differential hadronic
tensor is now

AW, 4 1o PO,
W - ACP Z Q /2 (_gi )(27r)fq(XB +XL) (9)

e where P(y) = [L + (1 — y)?]/y is the quark-to-photon splitting
function.

o gV =gt — gl gt — ghtg” is the projection tensor.
o xp =12, /[2pTq"y(1 — y)] is the momentum fraction that is related
to the formation time Trom = [x.p] 1.




Single scattering(y-rad)

We now write out the hadronic tensor for one of (10-2=8) Feynman
diagrams as an example (0110).

Wégb” = Z —Tr[TalTal]/ h 22 (! /(‘2] /;’ 2m8(13)

x / d*yoe@v / d*yi / d*y| / d*z / d*z
4 4 =

< Gy [ e e
21 27

4 =/
Xe—ﬂq-(yl—y{)/ﬁe—ff’{-(y{—z')/ da gy

(2m)* (2m)*
- m Cfl o Cfl Ell N ‘_ﬁ
X (At (y0)y o <q1 A (Y1)>%<A (yl)c_]f—l—ie)
1P T (0)A) Gus ()

qP +ie




Single scattering(y-rad)

Including the rest of the diagrams
e central cutting: (1001), (0101), (1010)

e non-central cutting: (0200), (0020), (2000), (0002)
Note that (1100) and (0011) results in vanishing phase factor.

The double differential hadronic tensor for single scattering is now:

W{}“”_( —gi") ACAZQ“% Ply )fq(XB+xL){...} (11)




Gluon radiation

Consider the semi-inclusive process 3 *

e(L1) + A(Pa) — e(L2) + q(lg) + &(lg) + X (12)

Similar to the photon radiation. We will only pay attention to the
hadronic tensor.
We now write out the hadronic tensor for one of (21-4=17) diagrams.

e 3 x 3 =9 for central cutting
e 3 x 2 =6 for non-central double scattering
e 3 x 2 =6 for non-central mixed scattering

Note that 4 of the mixed scattering diagram vanishes due to their
vanishing phase factor.

3B.W. Zhang, X.N. Wang, NPA 720 (2003) 429-451
4E. Wang, X.N. Wang, PRL 89(2002) 162301



single scattering(g-rad)

4 4
A _ & d*lg 2 d* dlg 2
Wi = NC/(2W)427T5(/g) i)

></67'4)/06"5"”’/d“z/d“z’/d“a/d“z{

4 4
y / (C; q)14 e—ian-(n—2) (d ’)14 o ih(z-21) g ils-(21-2)
T 27

4
ol (z—2) / KA ) / AL gt~
e’ )’

<A1 T e, TG 1)
1
Xrgllfvllilq( /1’_k1’/ )A’YI(Zl)Gzld?l(g) iliflbé’( klvll) ( )
Bra !
<Gl (g T4 B w0 (13

Notice the triple gluon vertex I factor in the current tensor.



single scattering(g-rad)

The double differential hadronic tensor from all 17 cut diagrams
contributions is given as:
dWAR
dyd/gZJ_

v as P
= (—gﬁ )AC;,ACAf gy) fq(XB+X[_)
21 /gJ_

-
x/ dZ={---} (14)
0
Then, the gluon radiation spectrum is:

dNg — _  ~ as Ply)
dydI?, Aor 2.

1+/L dZ‘{---}] (15)

where the kernel is same for zero-th order.




Transport coefficient
We now look at the complete expression of the gluon radiation spectrum.

dN, as P(y L= 1
é’; = CA—SZ(—) [1+/ dz {72
dydiq am 2 0 L+ —y)2
2 3
4—32 4y _ Cp _ Dpy
x || ————TfepTz27) = TP =2 — fptzT |
2 Ca yq—
2 3 4
8-y t+y — % -, CF 3 - Dr2
| T 2T+ Py =2~ FepT 2T =
2 C (ya—)
-1 - . Dr2
w2 (FxpTZ7) = SuxptzT)+ 22 ) S (16)
2 Ch I
gl

where we have:
o CaP(y) = CaP(¥)g—qv = %P(Y)q—mg
e D;1 and Dy; are the longitudinal drag é and longitudinal momentum
diffusion &,.
o D12 =g’ yity [ dz 55 (pl0L AT (27)0LAT(0)|p) = 3dq is the
transverse momentum diffusion (transport coefficient), g—:‘c?q = qg

o f(x) =2 —2cos(x) = 4sin? (5—;) is related to the formation time.




Evolution equation

The medium-modified DGLAP fragmentation function is then:

Oln Q2 o 2n) oy
4 / dCK(C.yrq.Q2)D(z/y, qy. @)| (17)

) [Dlz/y.q~ @)

where we have used:
_ (442 C N 7—.
o the kernel K = (@) sin (27{) (=27,
o transverse momentum 2, = Q?

. . 29 y(1—
o formation time Tfoym = w
gL




Detailed Balance

We now try to include the detailed balance equation by introducing the
Bose enhancement and absorption factor into the gluon radiation
spectrum. where

w=1/ (18)

1+ N(w) : for emission }
g

N(w) : for absorption

with N(w) = [e¥/T —1]7%, T is local temperature. Knowing that the
gluon radiation spectrum is an odd function:

dNZ(w)  dNPY(—w)

=- 19
dwdl?, dwdl?, (19)

We can work out the total gluon spectrum.




Detailed Balance cont.

Assume that w represents the absolute energy of the radiated gluon,
taking and values of (0, +00),

and the momentum fraction z takes the value of (—o0, +00), where
z < 0 represents absorption and z > 0 represents radiation. Then the
total gluon spectrum is:

Ntot rad )

X{[1 + fg(w)]o(w — zE) (1 — z) + fg(w)d(w + zE) }(20)

Then the energy loss:
0o dNtOt
AE = / dw a0 w

- /dz/d/L /dT/ dzddlz’ad (2., [l + £ (w)]5(w — zE)(L — z)

dNrad
+/dz/dll/d‘r/ dw—F— dzd/2 (z /i,‘r)w fe(w)d(w + zE) (1)




Detailed Balance cont.

where the first term is the radiation effect and the second term is the
absorption effect.

Since w = (0, +00), integrating [, dwd(w + zE) force z to take only
negative values, i.e. §(—z).

dNrad
AE = /dz/d/i/dfﬁ(z, 2. 7)(zE)[1 + £, (zE)]0(1 — 2)
rad
/dz/dlL/deZdeT 2,12, 7)(—zE)fy(—2E)0(—2z)
rad
= / dz/dlL/ ddl2d (z, 2, 7)(zE)[L + £, (2E)]

/ dz/d/L/de d/:; (z, 2, 7)(—zE)fy(—2E) (22)

We can change the integration variable for the absorption term from dz
to dz’, i.e. 2/ = —z by the following substitution:

0 0 o G\
/ dz/dz’5(2+z’) = —/ dz' :/ dz' (23) %
—o0 3] 0 Nz




Detailed Balance cont.

Then the energy loss:

rad

1 dN
AE = / dz/dﬁ/clrm(z, 2, 7)(zE)[1 + f(2E)]

rad
/ dz’ /dll/ ’dl2d (=2, 3, 7)(Z E)f, (7 E(24)

Where we have:

dN:d 2 205 [1+(1—2) il 2 A
———(z,I,7) = Ci— > 5
dzdl? dr T z IL(I + ) 4Ez(1 — z)
dNg? 2a 1+Z —Pr
’ g2 (7zl’li’7-) = 7CA > 2 2 ’ > ’
dz’dl% dt I +u 4Ez' (1 4+ z
L

(25)




Detailed Balance cont.

Finally, we can rewrite this as:
AE = AE, + AE, + AE. (26)

Where

ng’f’d
dzdl? dt

ngd
dzdlf_ dr

0o dNred
AEC = /0 dz/dli/d’rdzdllg_d’r(_27 /i,T)(ZE)fg(ZE) (27)

(z, /i ,7)(zE)

(27 /Jz_vT)(ZE)fg(ZE)




Work in progress

currently working on implementing the detailed balanced gluon
spectrum in the software

testing whether numerical results will fit experimental data (Raa)
using RHIC and LHC kinematics at various centrality.
radiative and collisional energy loss included.

using parton evolution at both vaccum and radiation medium.

Thank you.




Effects of detailed balance

We wanted to see how the detailed balance relation (temperature
dependent) can affect the overall energy loss mechanism.

19

—— LHC(b+c)
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Effects of detailed balance cont.

—— LHC(b+c)
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