Required luminosity at Z factories ?

Physics motivations

Picture taken by J. Wenninger

Skype meeting with IHEP 16 Nov 2016

FCC-ee luminosity and running scenario

Expected luminosities Luminosity [10³⁴ cm⁻²s⁻¹] 10^{3} 2×10³⁶ cm⁻²s⁻¹ [1] FCC-ee (Baseline, 2 IPs) $2 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$ / IP at the Z pole FCC-ee (Target, 4 IPs) [2] ILC $1.5 \times 10^{36} \text{ cm}^2 \text{s}^3$ ILC (Lumi Upgrade) 10^{2} CLIC [3] CEPC (2 IPs) 5 × 10³⁵ cm⁻²s⁻¹ 0×10³⁵ cm⁻²s⁻¹ 10 6×1034 cm-2s-1 [1] Conservative baseline, FCC week in Rome (2016) 500 GeV : 1.8 × 10³⁴ cm⁻²s HZ [2] Ultimate target, FCC week in Washington (2015) 1 [3] Proceedings of IPAC 2016 $t\bar{t}$: 1.0 × 10³⁴ cm⁻²s⁻¹ Dashed lines : Possible energy and luminosity upgrades 1000 3000 0 2000 √s [GeV]

Running plan: 160 days of physics / year, availability 65%, 2 or 4 experiments

Mode	Lumi / year	# years	# events	Lumi / IP
Z (88-94)	40-80 ab⁻¹	3-5	Up to 10 ¹³ Z	2 × 10 ³⁶ cm ⁻² s ⁻¹
WW (161)	4-15 ab-1	1-2	Up to 10 ⁸ WW	2-4 × 10 ³⁵ cm ⁻² s ⁻¹
HZ (240)	1-3.5 ab-1	3-5	1-2 × 10 ⁶ HZ	5-10 × 10 ³⁴ cm ⁻² s ⁻¹
tt (350-370)	0.25-1 ab-1	3-5	1-2 × 10 ⁶ tt	1-2 × 10 ³⁴ cm ⁻² S ⁻¹

Blondel, Janot, Koratzinos

Why so high luminosity ?

- Because it is possible
 - No physicist will ever complain that the luminosity is too high
 - Pile-up is not a concern: less than one γγ collision every 300 bunch crossings

Sensitivity to very rare processes increases with statistics

• Example: Very weakly coupled right-handed neutrinos

- ➡ Almost blind with 10³⁴
- ➡ Most of the relevant parameter space covered with 10³⁶
- Many other examples can be cited (LFV, FCNC, Flavours, ...)

Blondel, Janot, Koratzinos

Why so high luminosity ? (cont'd)

- Electroweak observables sensitive to heavy particles in "loops"
 - The more precise their measurement, the heavier particles tested
 - Statistics is one of the keys for that purpose
- **•** For example, in the standard model

Without a top quark and a Higgs boson

$$\Gamma_{II} = \frac{G_F}{\sqrt{2}} \frac{m_Z^3}{24\pi} \left(1 + \left[\frac{1}{4} - \sin^2 \theta_W^{eff} \right]^2 \right)$$

$$m_W^2 = \frac{\pi \alpha_{QED} \left(m_Z^2 \right)}{\sqrt{2} G_F \sin^2 \theta_W^{eff}}$$

In the Standard Model

×(1+
$$\Delta\rho$$
), with $\Delta\rho = \frac{\alpha}{\pi} \frac{m_t^2}{m_Z^2} - \frac{\alpha}{4\pi} \text{Log} \frac{m_H^2}{m_Z^2} + \dots \approx 1\%$

$$\times \frac{1}{1 - \Delta r}, \text{ with } \Delta r = -\frac{\cos \vartheta_W}{\sin^2 \vartheta_W} \Delta \rho$$

$$+\frac{\alpha}{3\pi} \left[\frac{1}{2} - \frac{1}{3} \frac{\sin^2 \vartheta_W}{1 - \tan^2 \vartheta_W} \right] \text{Log} \frac{m_H^2}{m_Z^2} + \dots \approx 1\%$$

- With m_{top} & m_w directly measured with precision
 - And accurate measurements of m_Z, m_H, α_{QED} (m_Z²) and sin² θ_{W}^{eff} to predict m_{top} & m_W
 - The standard model has nowhere to go
 - Precision measurements become sensitive to other particles in the loops

Example: the W mass

Current status

Direct measurement

 $M_W = 80.385 \pm 0.015 \text{ GeV}$

Prediction from precision measurements

 $M_W = (80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta \alpha_{\text{had}}})$ $\pm 0.0017_{\alpha_{\rm S}} \pm 0.0002_{M_{\rm H}} \pm 0.0040_{\rm theo}) {\rm GeV}$

 $(80.359 \pm 0.011_{tot}) \text{ GeV}$, Baak, Kogler, arXiv:1306:0571

Prediction more precise than direct measurement

Requires polarization at the WW threshold (i.e., a large ring)

- At the FCC-ee, direct measurement precision < 0.0005 GeV
 - All precision measurements (esp. at the Z pole) need to be improved accordingly
 - Together with theoretical calculations (higher orders missing today)
 - ➡ Run at 350 GeV: improve m_{top} precision by a factor 25 → 0.0002 GeV
 - Polarization at the Z pole: improve m_7 by a factor 25 \rightarrow 0.0001 GeV
 - 4 years at 10³⁶ cm⁻²s⁻¹: improve α_{OFD} by a factor 4 → 0.0004 GeV
 - 2 years at 10³⁶ cm⁻²s⁻¹: improve α_s by a factor 10 arXiv:1308:3176 → 0.0002 GeV

P.J., arXiv:1512:05544

Large ring

Many bunches

10³⁶

Blondel, Janot, Koratzinos

Skype meeting with IHEP 16 Nov 2016

Summary

- □ If the next e⁺e⁻ collider is able to
 - Measure the top mass to ~30 MeV
 - Measure the W mass to 0.5 MeV
 - Which both require a large ring
 - Transverse polarization at the WW threshold
 - Centre-of-mass energy up to 350 GeV
- **u** It must be complemented with
 - A large statistics run at the Z (> 10^{36} cm⁻²s⁻¹) (\rightarrow large ring)
 - Order-of-magnitude improvement in theory predictions
 - To be able to predict the W mass to 0.5 MeV (in particular) as well
 - And reap the benefits in sensitivity to new physics
- This run also has unique capabilities for direct new physics discoveries
- This is what the FCC-ee design is aiming at, altogether
 - If one ingredient is missing, the sensitivity to new physics drastically reduces