1. Cross section comparison – Higgs vs Z:

$$\sigma(e+e- \to ZH) = 200 \text{ fb}$$
 $\sigma(e+e- \to Z) = 41 \text{ nb} = 200,000 \text{ times larger than } \sigma(e+e- \to ZH)$ Therefore, for the same $\int L$, 1 Higgs \leftrightarrow 10⁵ Z's

- 2. Luminosity and number of Z's:
 - CEPC for Higgs: $(L = 2 \times 10^{34})$ $\int L = 500 \text{ fb}^{-1} \text{ per year for 2 IPs}$ $= 5 \text{ ab}^{-1} \text{ in 10 years}$ $\rightarrow 10^6 \text{ Higgs}$
 - CEPC for Z: $(L = 1 \times 10^{34})$ $\int L = 250 \text{ fb}^{-1} \text{ per year for 2 IPs}$ $\rightarrow 5 \times 10^{10} \text{ Z's} \quad \text{in 5 years}$
 - FCC-ee for Z: (L = 2 \times 10³⁶) $\int L = 40-80 \text{ ab}^{-1} \text{ per year for 2 IPs}$ $\rightarrow 10^{13} \text{ Z's} \qquad \text{in 5 years}$
 - LEP2 for Z: (L = 1 \times 10³²) \int L \rightarrow 4.5 x 10⁶ Z's for each of the four IPs

Purpose of the meeting:

Physics reach of 10¹¹ *vs* **10¹³ Z's**