Z-Factory & Heavy Hadron Physics

Based on a report by Chinese Z-factory working group

Chao-Hsi Chang (Zhao-Xi Zhang)

Institute of Theoretical Physics Chinese Academy of Sciences, Beijing (ITP, CAS)

τ-lepton physics:

If 10¹² Z-bosons/year or higher, then 10¹⁰ τ -lepton pairs (more)/year with quite great Lorentz boost effects may be produced @ Super Z-factory. Therefore, the rare decays

 $\tau \rightarrow e\gamma, \ \tau \rightarrow \mu\gamma, \ \tau \rightarrow \overline{\mu}\mu\mu, \ \tau \rightarrow \mu\overline{e}e, \ \tau \rightarrow \overline{e}ee,$ etc and/or CPV in decays may reach to up-to 10⁻¹⁰ level (even higher) !

Neutrino physics: The invisible width of Z-boson→ 3 (2.984±0.008) Types of light neutrinos and how big a room left for the light neutrinos mixing with the sterile ones and else.

Flavor physics & QCD physics etc Z-factory vs super B-factory & τ-charm factory c, b-hadron physics (especially open bottom)

Physics @ Z-factory

QCD physics:

- **Directly measure** $\alpha_{s}(m^{2}_{Z})$ etc
- Fragmentation functions (FFs):

For example: FF of a (heavy) hadron from a quark c or b or a light quark or a gluon etc.

Significance: experimentally to use them for flavor tag in hadron collisions etc.; theoretically to understand QCD & models etc.

The FF for b or c-quark to ground, excited B or D meson and to bottom or charm baryon etc.

Also polarized fragmentation functions:

2016/11/16

Physics @ Z-factory

◆ The Polarized fragmentation functions: For example: b to Λ_b^0 $e^+ + e^- \rightarrow b + \bar{b}$ $b \rightarrow \Lambda_b^0 + \cdots$ Frag. Func. $\Lambda_b^0 \rightarrow \Lambda_c^+ + \pi^-$ To measure polarization

Non-perturbative fragmentation models: LUND, Webber Cluster, Quark Combination (ShangDong) Model. It is the best place to test the models.

• Flavor & hadron physics

Light flavors & hadrons (contain light quarks only)

 $m_{u_{i}} m_{d_{i}} m_{s} < \Lambda_{QCD_{i}}$

Heavy flavors & hadrons (contain heavy quarks)

$m_b > m_c > \Lambda_{QCD_r}$ (without t-quark)

We need to understand both kinds of the hadrons and advantages to understand the heavy hadrons:

- pQCD applicable due the `heaviness';
- Effective theories: Heavy flavor effective theory, NRQCD etc;
- Mass hierarchy of b, c quarks (small, mixing);
- Lifetime for heavy component `matches' the detectors;
- etc

\$\$ c, b-flavor physics (especially `Lorentz boost')

D-meson: $D^0 - \overline{D}^0$ **mixing: Due the Lorentz boost and the lifetime of D meson, at Z-factory the CP violation in the mixing can be observed, whereas it is impossible at B-factory.**

C, b-hadron physics

 $Br(Z \to b\bar{b}) = (15.12 \pm 0.05)\%, \quad Br(Z \to c\bar{c}) = (12.03 \pm 0.21)\%,$

Heavy flavored hadrons: mesons and baryons CKM elements, mixing, CPV, rare processes

 $Br(Z \to B + X) = (6.08 \pm 0.13)\%, \quad Br(Z \to B_s + X) = (1.59 \pm 0.13)\%$

 $Br(Z \to \Lambda_c + X) = (1.54 \pm 0.33)\%, \quad Br(Z \to \Xi_c + X) = seen,$

 $Br(Z \to \Xi_b + X) = seen$,

 Λ_b (???), $Br(Z \to b - baryon + X) = (1.38 \pm 0.22)\%$

Many baryon states need to be confirmed!

2016/11/16

Physics @ Z-factory

Double heavy hadrons :

 $Br(Z \rightarrow b\bar{b}b\bar{b}) = (3.6 \pm 1.3) \times 10^{-4}$

 $Br(Z\to b\bar{b}c\bar{c})\sim 10^{-3}\,,\quad Br(Z\to c\bar{c}c\bar{c})\sim 10^{-3}\,$

H_{QQ'} :

B_c meson,, $\Xi_{cc}, ~~\Omega_{cc}, ~~\Xi_{bc\prime}$, Ω_{bc} , $~~\Xi_{bb\prime}$ and their excited states:

- Their production can be estimated by pQCD reliable;
- The ground states decay 'weakly' that they have a comparatively long lifetime (1.0~0.1ps) and one can trace the vertices in vertex detector from production to decay (with the Lorentz boost).

Take example B_c meson & its excited states to illustrate : The spectroscopy:

2016/11/16

Physics @ Z-factory

10

Production (estimated reliably by NRQCD):

$\operatorname{contribution}$	total	\overline{b} -frag.	c-frag.	interference
$\sigma(B_c, {}^1S_0)$	2.734	2.613	5.20×10^{-2}	6.90×10^{-2}
$\sigma(B_c^*, {}^3S_1)$	3.823	3.722	4.45×10^{-2}	5.65×10^{-2}
$\sigma(B_c^{**}, {}^1P_1)$	0.271	0.269	3.01×10^{-3}	-1.01×10^{-3}
$\sigma(B_c^{**}, {}^{3}P_0)$	0.164	0.157	8.13×10^{-3}	-1.13×10^{-3}
$\sigma(B_c^{**}, {}^{3}P_1)$	0.340	0.331	5.77×10^{-3}	3.23×10^{-3}
$\sigma(B_c^{**}, {}^{3}P_2)$	0.365	0.366	3.87×10^{-4}	-1.39×10^{-3}

The cross sections in *pb*.

Z couples to fermions in vector and psudo-vector that makes the asymmetry in forward and backward, thus the asymmetry in production may be used to measure $Sin \Theta_w$!

Differential cross sections for various states.

The polarized e+ebeams make the asymmetry stronger.

The dependence on the Wenberg angle $Sin\Theta_W$.

Another example: measure the spectrum for heavy quarkonia & exatics:

 $e^+(p_1) + e^-(p_2) \to \gamma(p_3) + H_{Q\bar{Q}}(P)$ Two body final state!

(monoenergy photon)

Here $H_{Q\bar{Q}}$: $\eta_c, J/\psi, \cdots, \eta_b, \Upsilon, \cdots, X_{c\bar{c}}, \cdots, X_{b\bar{b}}, \cdots$

	${}^{3}S_{1}$	$^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	$^{1}P_{1}$
$\sigma_{(c\bar{c})}(pb)$	0.934	$0.662 imes10^{-3}$	$0.328 imes 10^{-4}$	$0.197 imes 10^{-3}$	$0.661 imes 10^{-4}$	$0.615 imes 10^{-3}$
$\sigma_{(b\bar{b})}(pb)$	0.565×10^{-1}	0.475×10^{-2}	$0.128 imes 10^{-4}$	$0.838 imes 10^{-4}$	$0.930 imes 10^{-4}$	0.833×10^{-4}

One more example:

The production of baryons Ξ_{cc} , Ξ_{bc} , Ξ_{bb} (in *pb*):

Heay flavored exotic hadrons:

Tetraquarks (Z⁺(3900),....):

 $(Q\bar{Q}'q\bar{q}'), (Q\bar{Q}'Q\bar{q}'), (Q\bar{Q}'q\bar{Q}'), (Q\bar{Q}'Q\bar{Q}') : Q, Q' = c, b; q, q' = u, d, s$ Pentaquarks (Pc⁺(4450), Pc⁺(4380),....):

 $(Q\bar{Q'}qq'q'')\,,(Q\bar{Q'}Qqq')\,,etc\,:\,Q\,,Q'=c\,,b\,;\;q\,,q'\,,q''=u\,,d\,,s$ Hybrads:

 $(Q\bar{Q'}g), etc : Q, Q' = c, b; g = gluon$

Advantages in studying the heavy exotic hadrons: The 'mixing' and 'interferences' are simple; The heavy components decay in the detector; etc

Summary

- There are may interesting and important physics:
 - Highly precise tests of SM, looking for direct and indirect evidence for new physics
 - FFs for heavy and double heavy hadrons
 - Heavy flavor physics
 - Heavy and double heavy hadron physics
- The luminosity of SZF ∠ ≥10³⁵cm⁻²s⁻¹ is crucial for hadron physics

• For the QCD problems and hadron physics, the luminosity $\mathcal{L} \ge 10^{35} \text{cm}^{-2} \text{s}^{-1}$ is crucial, as the production in the order of *pb* (even smaller).

There is no 'critical luminosity' for such physics as 'highly precise test of SM,' 2016/11/16
Physics @ Z-factory
17