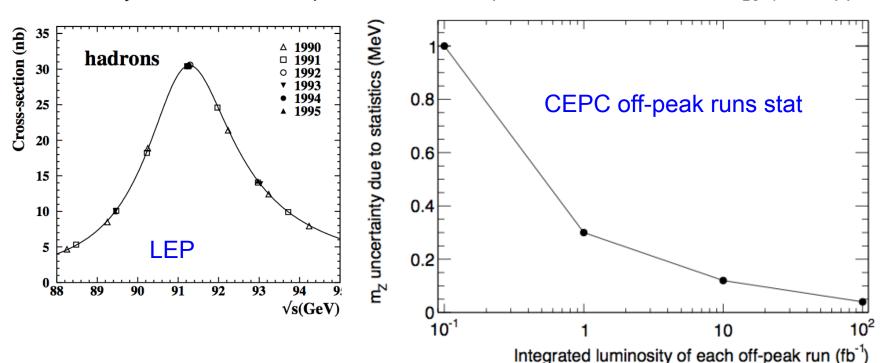


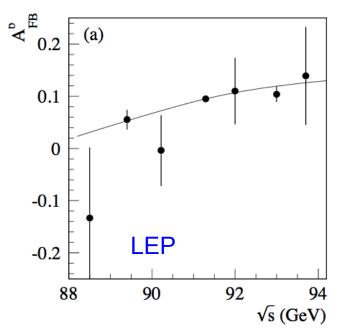
Electroweak physics at CEPC

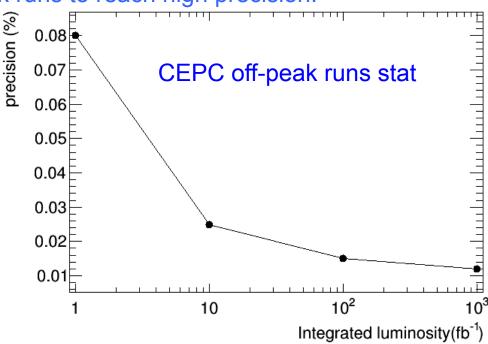
Zhijun Liang (IHEP)


The prospect of CEPC electroweak physics in pre-CDR study

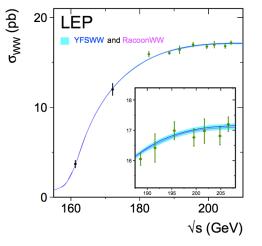
- Expected precision on some key measurements in CEPC Pre-CDR study based on projections from LEP.
 - http://cepc.ihep.ac.cn/preCDR/volume.html

Observable	LEP precision	CEPC precision	CEPC runs	
m_Z	2 MeV	0.5 MeV	Z lineshape	
m_W	33 MeV	3 MeV	ZH (WW) thresholds	
A_{FB}^b	1.7%	0.15%	Z pole	
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z pole	
R_b	0.3%	0.08%	Z pole	
N_{ν} (direct)	1.7%	0.2%	ZH threshold	
N_{ν} (indirect)	0.27%	0.1%	Z lineshape	
$R_{m{\mu}}$	0.2%	0.05%	Z pole	
$R_{ au}$	0.2%	0.05%	Z pole	


Z mass measurement


- LEP measurement: 91.1876±0.0021 GeV
- CEPC possible goal: 0.5 MeV
 - Z threshold scan runs is needed to achieve high precision.
 - Stat uncertainty: 0.1MeV (assuming >500fb-1)
 - Better to have more than 10fb⁻¹ for off-peak runs (6 off-peaks runs)
 - Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty need to be better than 5ppm
 - start to Establishing a accelerator model relating the measured beam energy
 - Study of the resonant depolarization technique to measure beam energy (LEP approach)

Weak mixing angle $\sin^2\theta_{eff}^{lept}$


- LEP/SLD: 0.23153 ± 0.00016
 - 0.1% precision.
 - Stat error in off –peak runs is one of limiting factor.
- CEPC
 - Stat error: 0.02%; (off-peak runs)
 - systematics error : 0.01%
 - Input From Backward-forward asymmetry measurement
 - The statistics of off-Z peak runs is one of the important issue.
 - Need at least 10 fb⁻¹ for off-peak runs to reach high precision.

W mass measurement

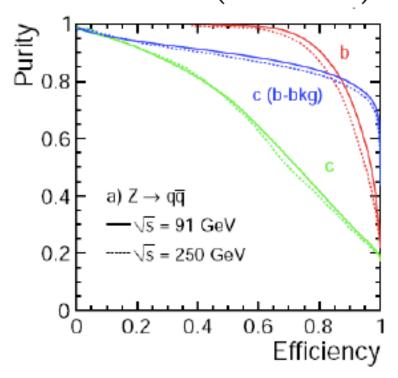
- Current PDG precision: 80.385±0.015 GeV
 - Possible goal for CEPC: 3 MeV
- Three methods for W mass measurements:
 - 1.WW Threshold scan (√s=160GeV):
 - Advantage: Very robust method, can achieve high precision.
 - Disadvantage
 - Beam polarization design has not finished.
 - Higher cost, Require dedicated runs >100fb⁻¹ on WW threshold(160-170GeV)
 - 2.Direct measurement of the hadronic mass (major method for CDR)
 - Based on 10¹⁰ Z->hadrons sample to calibrate jet energy scale (< 3MeV)
 - Advantage :
 - No additional cost :measured in ZH runs (sqrt(s)=250GeV)
 - Higher statistics: 10 times larger than WW threshold region
 - Lower requirement on beam energy uncertainty.

Summary

- From preliminary study on major electroweak precision measurement.
 - 10¹⁰ Z seems to be good enough for most of Z pole measurements
 - 10¹³ Z may help a lot Weak mixing angle measurement
 - Need to optimize on off-peak runs statistics
 - Need at least 100fb⁻¹ on WW threshold(160-170GeV)
 for W mass measurement if we decide to use WW
 threshold scan method.

Branching ratio (Rb)

 $\frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to had)}$


LEP measurement 0.21594 ±0.00066

Stat error : 0.44%Syst error : 0.35%

Typically using 65% working points

CEPC

- Expected Stat error (0.04%)
- Expected Syst error (0.07%)
- Expect to use 80% working points
 - 15% higher efficiency than SLD
 - 20-30% higher in purity than SLD

Uncertainty	LEP	CEPC	CEPC improvement
charm physics modeling	0.2%	0.05%	tighter b tagging working point
hemisphere tag correlations for b events	0.2%	0.1%	Higher b tagging efficiency
gluon splitting	0.15%	0.08%	Better granularity in Calo