# Precision electroweak measurement at Z-pole

Lian-Tao Wang

contributors: JiJi Fan, Zhijun Liang, Matthew Reece

#### Z pole measurements

- Large statistics at Z-pole will directly impact
  - B physics, tau physics
  - ▶ Rare Z decays.
  - Here, the more the better. Can be expensive and challenging. Need strong physics case.
- I will focus on Z-pole electroweak precision measurements.
  - Important to understand electroweak symmetry breaking.
  - Strong correlation with the Higgs factory measurements.



With possible improvements.

| CEPC          | $\sin^2 	heta_{ m eff}^\ell$                                 | $\Gamma_Z [{\rm GeV}]$                              | $m_t \; [\text{GeV}]$                 |
|---------------|--------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|
| Improved Erro | $r \left( \pm 2.3_{exp} \pm 1.5_{th} \right) \times 10^{-5}$ | $(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4}$ | $\pm 0.03_{\rm exp} \pm 0.1_{\rm th}$ |
|               |                                                              |                                                     |                                       |

Preliminary estimates of exp systematics from Zhijun Liang



Study based on several Giga Z of data. Systematics dominated. (more on next page)

#### Some remarks

- Experiment systematics.
  - Comparable to the theory systematics
  - More pessimistic than the ones from FCC-ee.
- Theory uncertainties assuming improvement beyond current level by one order in QCD and electroweak loop.
- Based on these assumptions, < 10 Giga Z is enough for electroweak oblique parameter measurement.
- Of course, the needed statistics depends sensitively on the eventual systematics.





de Blas et al. 1608.01509 Different shades w/wo theory uncertainty

M. Reece. Stat and Syst based on "First look" paper

|                                        | TLEP-Z                                                             | TLEP-W                                                             | TLEP-t                                                             |
|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| $\alpha_s(M_Z^2)$                      | $\pm 1.0 \times 10^{-4}$ [37]                                      | $\pm 1.0 \times 10^{-4}$ [37]                                      | $\pm 1.0 \times 10^{-4}$ [37]                                      |
| $\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$ | $\pm 4.7 \times 10^{-5}$                                           | $\pm 4.7 \times 10^{-5}$                                           | $\pm 4.7 \times 10^{-5}$                                           |
| $m_Z [{ m GeV}]$                       | $\pm 0.0001_{\rm exp}$ [2]                                         | $\pm 0.0001_{\rm exp}$ [2]                                         | $\pm 0.0001_{\rm exp}$ [2]                                         |
| $m_t \; [\text{GeV}] \; (\text{pole})$ | $\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$ [23]                         | $\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$ [23]                         | $\pm 0.02_{\rm exp} \pm 0.1_{\rm th} \ [2, \ 23]$                  |
| $m_h \; [{ m GeV}]$                    | $< \pm 0.1$                                                        | $< \pm 0.1$                                                        | $< \pm 0.1$                                                        |
| $m_W \; [\text{GeV}]$                  | $(\pm 8_{\rm exp} \pm 1_{\rm th}) \times 10^{-3} \ [23, 40]$       | $(\pm 1.2_{\rm exp} \pm 1_{\rm th}) \times 10^{-3} \ [20, 40]$     | $(\pm 1.2_{\rm exp} \pm 1_{\rm th}) \times 10^{-3} \ [20, 40]$     |
| $\sin^2 	heta_{	ext{eff}}^\ell$        | $(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5} \ [20, \ 40]$ | $(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5} \ [20, \ 40]$ | $(\pm 0.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5} \ [20, \ 40]$ |
| $\Gamma_Z \; [\text{GeV}]$             | $(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4} \ [2, 26]$      | $(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4} \ [2, 26]$      | $(\pm 1_{\rm exp} \pm 0.8_{\rm th}) \times 10^{-4} \ [2, \ 26]$    |

FCC-ee projections, based on "First look" paper

#### A much better microscope



#### A much better microscope



## A big step forward



Large improvements across the board

### Possible EW program at the CEPC

- Z-pole.
  - Planning at preliminary stage.
  - ▶ Will use 1 year, 2 detector and 100s fb<sup>-1</sup> here.
  - ▶ A factor of 100 more Zs than LEP-I
- WW
  - ▶ Threshold. 100s fb<sup>-1</sup>
  - Continuum WW production in Higgs factory mode.