Effective field theories in future Higgs factories

Jiayin Gu (顾嘉荫)

DESY/IHEP

Workshop on CEPC Physics December 15, 2016

current work with G. Durieux, C. Grojean, K. Wang

Jiayin Gu (顺嘉荫)

Effective field theories in future Higgs factories

DESY/IHEP

Introduction

- Higgs and nothing else?
- \blacktriangleright The scale of new physics Λ is large \Rightarrow EFT is a good description at low energy.
- We want a Higgs factory! $(e^+e^- \rightarrow hZ \text{ at } 240\text{-}250 \text{ GeV})$
- A global fit to EFT parameters is desired, but one may get poor results due to a large degeneracy among many parameters.
- To resolve the large degeneracy one should try to include all possible measurements (and also make reasonable assumptions).

Future e^+e^- colliders

- Circular colliders
 - ► The Circular Electron-Positron Collider (CEPC) in China.
 - ▶ The Future Circular Collider (FCC-ee) at CERN.
 - ▶ Possible runs at 240 GeV (Higgs factory), Z-pole, and 350 GeV.
 - Large luminosity.
 - > The tunnel can be used for a hadron collider with $\sqrt{s}\sim 100\,{\rm TeV}$ in the future!

Linear collider

- The International Linear Collider (ILC) in Japan.
- Smaller luminosity, but can achieve a much larger center of mass energy (500 GeV, and possibly 1 TeV).
- Longitudinal beam polarization.

What measurements can be done in a Higgs Factory?

- A circular collider at 240 GeV or a linear collider at 250 GeV.
- ▶ Rate measurements in $e^+e^- \rightarrow hZ$, both $\sigma(hZ)$ and $\sigma(hZ) \times BR(h \rightarrow xx)$.
- Angular distributions in $e^+e^- \rightarrow hZ$.
- *WW* fusion production of Higgs $(e^+e^- \rightarrow \nu \bar{\nu} h)$.
- ▶ $e^+e^- \rightarrow WW$. ($\sigma(WW) \sim 10^2 \times \sigma(hZ)$. Buy one get one free!)
- The beam polarization option in a linear collider can effectively increase the total number of independent observables.

- other running options of a future e^+e^- collider
 - Electroweak precision measurements at Z-pole (a better version of LEP).
 - $\sqrt{s} \sim 350 \text{ GeV}$ ($t\bar{t}$ threshold); $\sqrt{s} \sim 500 \text{ GeV}$ or above (ILC).

rate measurements in $e^+e^- ightarrow hZ$

	precision		
meausrement	CEPC	ILC	
$\sigma(hZ)$	0.50%	2.0%	
	$\sigma(hZ) \times BR$		
$h ightarrow bar{b}$	0.21% (0.24%)	1.2%	
h ightarrow c ar c	2.5%	8.3%	
h ightarrow gg	1.3%	7.0%	
h ightarrow au au	1.0%	3.2%	
$h ightarrow WW^*$	1.0%	6.4%	
$h ightarrow ZZ^*$	4.3%	19%	
$h ightarrow \gamma \gamma$	9.0%	34%	
$h ightarrow \mu \mu$	17%	72%	
$h ightarrow Z\gamma$	$\sim 25\% (4\sigma)$	$\lesssim 100\%$?	

- CEPC with 5 ab⁻¹ data at 240 GeV and ILC with 250 fb⁻¹ data at 250 GeV.
- ILC can also run at higher energies and may have luminosity upgrade.
- Rates can be measured very precisely!
- ▶ Both *\(\sigma(hZ)\)* and *\(\sigma(hZ)\)* × BR can be measured.
- $h \rightarrow Z\gamma$ is important!

Jiayin Gu (顾嘉荫)

Effective field theories in future Higgs factories

angular observables in $e^+e^- \rightarrow hZ$

- Angular distributions in $e^+e^- \rightarrow hZ$ can provide information in addition to the rate measurement alone.
- Previous studies
 - [arXiv:1406.1361] Beneke, Boito, Wang
 - [arXiv:1512.06877] N. Craig, JG, Z. Liu, K. Wang
- 6 independent asymmetry observables from 3 angles

$$\mathcal{A}_{\theta_1} , \ \mathcal{A}_{\phi}^{(1)} , \ \mathcal{A}_{\phi}^{(2)} , \ \mathcal{A}_{\phi}^{(3)} , \ \mathcal{A}_{\phi}^{(4)} , \ \mathcal{A}_{c\theta_1, c\theta_2} .$$

 Focusing on leptonic decays of Z (good resolution, small background, statistical uncertainty dominates). $e^+e^- \rightarrow \nu \bar{\nu} h$

- ▶ It is hard to separate the *WW* fusion process from $e^+e^- \rightarrow hZ, Z \rightarrow \nu\bar{\nu}$ at 240 GeV.
- It is not consistent to focus on one process and treat the other one as SM-like!
- ▶ We analyze the combined $e^+e^- \rightarrow \nu \bar{\nu} h$ process, assuming new physics can contribute to both processes. (The $h \rightarrow b\bar{b}$ decay channel is used.)

 $e^+e^-
ightarrow WW$

- ► $e^+e^- \rightarrow WW$ offers a great way to probe the anomalous triple gauge couplings (aTGCs, parameterized by $\delta g_{1,Z}$, $\delta \kappa_{\gamma}$, λ_Z).
- $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$ are related to Higgs observables.
- ▶ CEPC with 5 ab^{-1} data at 240 GeV can collect $\sim 9 \times 10^7 e^+e^- \rightarrow WW$ events.
- With such large statistics, the aTGCs can be very well constrained ([1507.02238] Bian, Shu, Zhang), but with two potential issues:
 - Systematic uncertainties can be important!
 - ▶ If $e^+e^- \rightarrow WW$ is measured more precisely than the Z-pole measurements, is it still ok to assume the fermion gauge couplings are SM-like?

The "10-parameter" framework in the Higgs basis

- Start with all the D6 operators that can contribute to the above measurements.
- Assume the new physics
 - is CP-even,
 - does not generate dipole interaction of fermions,
 - has no corrections to Z-pole observables and W mass (more justified if the machine will run at Z-pole),
 - ▶ is flavor universal (for Yukawa couplings, we assume $\delta y_u = \delta y_c = \delta y_t$, etc.).
- ▶ We are left with 10 operators, parameterized in the Higgs basis by:

$$\delta c_{Z}, \quad c_{ZZ}, \quad c_{Z\Box}, \quad c_{\gamma\gamma}, \quad c_{Z\gamma}, \quad c_{gg}, \quad \delta y_{u}, \quad \delta y_{d}, \quad \delta y_{e}, \quad \lambda_{Z}.$$

- Strong independent constraints can be obtained for all 10 coefficients!
- [arXiv:1505.00046] Falkowski
 [arXiv:1508.00581] Falkowski, Gonzalez-Alonso, Greljo, Marzocca

Higgs basis vs. the " κ -frame"

- Conventionally, many studies of Higgs couplings use the so-called "*k*-frame."
- > The Higgs basis is more general and consistent than the " κ -frame."
 - ▶ It allows couplings with different Lorentz structures, such as $hZ^{\mu\nu}Z_{\mu\nu}$ or $hZ_{\mu}\partial_{\nu}Z^{\mu\nu}$ (parameterized by c_{ZZ} and $c_{Z\square}$).
 - Gauge invariance is built in the parameterization.
- ► More parameters ⇒ more flat directions! Additional measurements are essential in resolving the flat directions.

Results of the "10-parameter" fit

- ▶ Much better than the current results! (Taken from [arXiv:1508.00581] Falkowski, Gonzalez-Alonso, Greljo, Marzocca, obtained from LHC 8 TeV Higgs data and LEP $e^+e^- \rightarrow WW$ data.)
- ► Haven't compared with HL-LHC data yet... (nontrivial to estimate the reach at HL-LHC)

Jiayin Gu (顾嘉荫)

Results of the "10-parameter" fit

► CEPC: circular collider, large luminosity.

- ▶ ILC: linear collider, beam polarization (70% of total Luminosity goes to $P(e^-, e^+) = (-0.8, +0.3)$, 30% goes to $P(e^-, e^+) = (+0.8, -0.3)$).
- Complementarity!

The importance of combining all measurements

- The results are much worse if we only include the rates of Higgs measurements alone!
- > There is some overlap in the information from different measurements.

Conclusion

The interplay between Higgs and TGC

- $\delta g_{1,Z}, \ \delta \kappa_{\gamma} \leftrightarrow \\ c_{ZZ}, \ c_{Z\Box}, \ c_{\gamma\gamma}, \ c_{Z\gamma}$
- We try different assumptions on the systematic uncertainties (in each bin with the differential distribution divided into 20 bins).
- Detailed study of e⁺e⁻ → WW required to estimate the systematic uncertainties!

Comparison with the Full ILC program

- "ILC full program" and "ILC full program with luminosity upgrades", both with $P(e^{-}, e^{+}) = (-0.8, +0.3)$,
 - 250 fb⁻¹ at 250 GeV, 330 fb⁻¹ at 350 GeV and 500 fb⁻¹ at 500 GeV,
 2 ab⁻¹ at 250 GeV, 200 fb⁻¹ at 350 GeV and 4 ab⁻¹ at 500 GeV.
- The ILC measurements at higher \sqrt{s} can be very helpful in resolving $\bullet \ \delta c_7 \leftrightarrow h Z^{\mu} Z_{\mu}, \quad c_{77} \leftrightarrow h Z^{\mu\nu} Z_{\mu\nu}, \quad c_{7\Box} \leftrightarrow h Z_{\mu} \partial_{\nu} Z^{\mu\nu}.$
- CEPC run at 350 GeV?

Jiayin Gu (顾嘉荫)

Constraining models! (preliminary results)

- Current work with Honglei Li, Zhen Liu, Shufang Su, Wei Su.
- Minimal Composite Higgs models with different fermion representation.
- Projected reach on the new physics scale in different types of strong interacting models. (See [arXiv:1603.03064] Liu, Pomarol, Rattazzi, Riva for more details.)

		Conclusion
Conclusion		

- ► After the discovery of Higgs at the LHC, a plausible "next step" is to build an e⁺e⁻ collider to perform Higgs precision measurements.
- Many measurements can be performed!
 - Rate measurements in $e^+e^-
 ightarrow hZ$ (production and Higgs decay),
 - Angular distributions in $e^+e^- \rightarrow hZ$,
 - WW fusion $(e^+e^- \rightarrow \nu \bar{\nu}h)$,
 - $\triangleright e^+e^- \rightarrow WW,$
 - Measurements with beam polarization.
- By combining all the available measurements and making reasonable assumptions on the new physics, we can obtain strong independent constraints on all the relevant dimension-6 operators!
- Complementarity between a circular collider and a linear collider.
- Still a lot of work to be done!

backup slides

Jiayin Gu (顾嘉荫) Effective field theories in future Higgs factories

DESY/IHEP

What's the best way to divide the total luminosity into runs with different polarization?

- ▶ Two polarization configurations are considered, $P(e^-, e^+) = (-0.8, +0.3)$ and (+0.8, -0.3).
- ▶ F(-+) in the range of 0.6-0.8 gives an optimal overall results.
- Runs with different polarizations probe different combinations of EFT parameters in Higgs production. So do runs at different energies.

1 (1

d-

Asymmetry observables

$$\mathcal{A}_{\theta_1} = \frac{1}{\sigma} \int_{-1}^{2\pi} d\cos\theta_1 \operatorname{sgn}(\cos(2\theta_1)) \frac{d\theta}{d\cos\theta_1},$$

$$\mathcal{A}_{\phi}^{(1)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin\phi) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(2)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin(2\phi)) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(3)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos\phi) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(4)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos(2\phi)) \frac{d\sigma}{d\phi},$$
(1)
$$\mathcal{A}_{\phi}^{(4)} = \frac{1}{\sigma} \int_{-1}^{2\pi} d\phi \operatorname{sgn}(\cos\theta_1) \int_{-1}^{1} d\cos\theta_2 \operatorname{sgn}(\cos\theta_2) \frac{d^2\sigma}{d\cos\theta_1 d\cos\theta_2},$$
(2)

Jiayin Gu (顾嘉荫)

 $\mathcal{A}_{c\theta_1}$

Effective field theories in future Higgs factories

The "10-parameter" framework in the Higgs basis

The relevant terms in the EFT Lagrangian are

$$\mathcal{L} \supset \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{tgc} , \qquad (3)$$

the Higgs couplings with a pair of gauge bosons

$$\mathcal{L}_{hVV} = \frac{h}{v} \bigg[(1 + \delta c_W) \frac{g^2 v^2}{2} W^+_{\mu} W^-_{\mu} + (1 + \delta c_Z) \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z_{\mu} + c_{WW} \frac{g^2}{2} W^+_{\mu\nu} W^-_{\mu\nu} + c_{W\Box} g^2 (W^-_{\mu} \partial_{\nu} W^+_{\mu\nu} + \text{h.c.}) + c_{gg} \frac{g_s^2}{4} G^3_{\mu\nu} G^2_{\mu\nu} + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + c_{Z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A_{\mu\nu} + c_{ZZ} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z_{\mu\nu} + c_{Z\Box} g^2 Z_{\mu} \partial_{\nu} Z_{\mu\nu} + c_{\gamma\Box} gg' Z_{\mu} \partial_{\nu} A_{\mu\nu} \bigg].$$
(4)

Conclusion

The "10-parameter" framework in the Higgs basis

Not all the couplings are independent, for instance one could write the following couplings as

$$\begin{split} \delta c_{W} &= \delta c_{Z} + 4\delta m \,, \\ c_{WW} &= c_{ZZ} + 2s_{\theta_{W}}^{2} c_{Z\gamma} + s_{\theta_{W}}^{4} c_{\gamma\gamma} \,, \\ c_{W\Box} &= \frac{1}{g^{2} - g'^{2}} \left[g^{2} c_{Z\Box} + g'^{2} c_{ZZ} - e^{2} s_{\theta_{W}}^{2} c_{\gamma\gamma} - (g^{2} - g'^{2}) s_{\theta_{W}}^{2} c_{Z\gamma} \right] \,, \\ c_{\gamma\Box} &= \frac{1}{g^{2} - g'^{2}} \left[2g^{2} c_{Z\Box} + (g^{2} + g'^{2}) c_{ZZ} - e^{2} c_{\gamma\gamma} - (g^{2} - g'^{2}) c_{Z\gamma} \right] \,, \end{split}$$
(5)

Assuming flavor universality, the Yukawa couplings are written as

$$\mathcal{L}_{hff} = -\frac{h}{v} \sum_{f \in u, d, e} \sum_{i=1}^{3} m_{f_i} (1 + \delta y_f) \bar{f}_{R,i} f_{L,i} + \text{h.c.}, \qquad (6)$$

TGC

$$\mathcal{L}_{tgc} = igs_{\theta_{W}}A^{\mu}(W^{-\nu}W^{+}_{\mu\nu} - W^{+\nu}W^{-}_{\mu\nu}) + ig(1 + \delta g_{1}^{Z})c_{\theta_{W}}Z^{\mu}(W^{-\nu}W^{+}_{\mu\nu} - W^{+\nu}W^{-}_{\mu\nu}) + ig\left[(1 + \delta \kappa_{Z})c_{\theta_{W}}Z^{\mu\nu} + (1 + \delta \kappa_{\gamma})s_{\theta_{W}}A^{\mu\nu}\right]W^{-}_{\mu}W^{+}_{\nu} + \frac{ig}{m_{W}^{2}}(\lambda_{Z}c_{\theta_{W}}Z^{\mu\nu} + \lambda_{\gamma}s_{\theta_{W}}A^{\mu\nu})W^{-\rho}_{\nu}W^{+}_{\rho\mu},$$
(7)

- $V_{\mu\nu} \equiv \partial_{\mu}V_{\nu} \partial_{\nu}V_{\mu}$ for $V = W^{\pm}$, Z, A,. Imposing Gauge invariance one obtains $\delta\kappa_{Z} = \delta g_{1,Z} t_{\theta_{W}}^{2}\delta\kappa_{\gamma}$ and $\lambda_{Z} = \lambda_{\gamma}$.
- ▶ 3 aTGCs parameters $\delta g_{1,Z}$, $\delta \kappa_{\gamma}$ and λ_{Z} , 2 of them related to Higgs observables by

$$\delta g_{1,Z} = \frac{1}{2(g^2 - g'^2)} \left[-g^2(g^2 + g'^2)c_{Z\square} - g'^2(g^2 + g'^2)c_{ZZ} + e^2g'^2c_{\gamma\gamma} + g'^2(g^2 - g'^2)c_{Z\gamma} \right],$$

$$\delta \kappa_{\gamma} = -\frac{g^2}{2} \left(c_{\gamma\gamma} \frac{e^2}{g^2 + g'^2} + c_{Z\gamma} \frac{g^2 - g'^2}{g^2 + g'^2} - c_{ZZ} \right).$$
(8)

Jiayin Gu (顾嘉荫)

Effective field theories in future Higgs factories