The Higgs Self-Coupling Measurement at e⁺e⁻ Colliders

Tim Barklow (SLAC)* CEPC Workshop, IHEP, Beijing, China Dec 14, 2016

*collaborators: Keisuke Fujii (KEK), Sunghoon Jung (SLAC), Michael Peskin (SLAC), Junping Tian (U. Tokyo)

We assume that $\sigma(e^+e^- \rightarrow HHZ)$ can be described by an effective field theory (EFT) containing a general $SU(2) \times U(1)$ gauge invariant Lagrangian with dimension-6 operators in addition to the SM.

Using the "Warsaw" basis, with the pure Higgs operators in the "SILH" basis, these are the 10 CP-conserving dim-6 operators relevant to this analysis:

$$\begin{split} \Delta \mathcal{L} &= \frac{c_H}{2v^2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) + \frac{c_T}{2v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi) - \frac{c_6 \lambda}{v^2} (\Phi^{\dagger} \Phi)^3 \\ &+ \frac{g^2 c_{WW}}{m_W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} W^{a\mu\nu} + \frac{4gg' c_{WB}}{m_W^2} \Phi^{\dagger} t^a \Phi W^a_{\mu\nu} B^{\mu\nu} \\ &+ \frac{g'^2 c_{BB}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{g^3 c_{3W}}{m_W^2} \epsilon_{abc} W^a_{\mu\nu} W^{b\nu}{}_{\rho} W^{c\rho\mu} \\ &+ i \frac{c_{HL}}{v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\overline{L} \gamma_{\mu} L) + 4i \frac{c'_{HL}}{v^2} (\Phi^{\dagger} t^a \overleftrightarrow{D}^{\mu} \Phi) (\overline{L} \gamma_{\mu} t^a L) \\ &+ i \frac{c_{HE}}{v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\overline{e} \gamma_{\mu} e) \;. \end{split}$$

In addition there are 4 CP violating terms:

$$\begin{split} \Delta \mathcal{L}_{CP} &= + \frac{g^2 \tilde{c}_{WW}}{m_W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} \widetilde{W}^{a\mu\nu} + \frac{4gg' \tilde{c}_{WB}}{m_W^2} \Phi^{\dagger} t^a \Phi W^a_{\mu\nu} \widetilde{B}^{\mu\nu} \\ &+ \frac{g'^2 \tilde{c}_{BB}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} \widetilde{B}^{\mu\nu} + \frac{g^3 \tilde{c}_{3W}}{m_W^2} \epsilon_{abc} W^a_{\mu\nu} W^{b\nu}{}_{\rho} \widetilde{W}^{c\rho\mu} \end{split}$$

where the dual field strength tensors are defined by

$$\widetilde{B}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} B^{\rho\sigma} , \quad \widetilde{W}^k_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} W^{\rho\sigma k}$$

In summary there are 10 CP-conserving coefficients:

$$\begin{array}{ccccc} c_{HL} & c_{HL}' & c_{HE} & c_{T} & c_{WB} & c_{3W} \\ c_{H} & c_{WW} & c_{BB} \\ c_{6} \end{array}$$

and 4 CP-violating coefficients:

 ${ ilde c}_{\scriptscriptstyle WW} = { ilde c}_{\scriptscriptstyle WB} = { ilde c}_{\scriptscriptstyle BB} = { ilde c}_{\scriptscriptstyle 3W}$

After EWSB we have, $\Delta \mathcal{L} = \Delta \mathcal{L}_h + \Delta \mathcal{L}_{eehZ} + \Delta \mathcal{L}_{TGC}$ where

$$\begin{split} \Delta \mathcal{L}_{h} &= -\eta_{h} \lambda_{0} v_{0} h^{3} + \frac{\theta_{h}}{v_{0}} h \partial_{\mu} h \partial^{\mu} h + \eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h + \frac{1}{2} \eta_{2Z} \frac{m_{Z}^{2}}{v_{0}^{2}} Z_{\mu} Z^{\mu} h^{2} \\ &+ \eta_{W} \frac{2m_{W}^{2}}{v_{0}} W_{\mu}^{+} W^{-\mu} h + \eta_{2W} \frac{m_{W}^{2}}{v_{0}^{2}} W_{\mu}^{+} W^{-\mu} h^{2} \\ &+ \frac{1}{2} \Big(\zeta_{Z} \frac{h}{v_{0}} + \frac{1}{2} \zeta_{2Z} \frac{h^{2}}{v_{0}^{2}} \Big) \hat{Z}_{\mu\nu} \hat{Z}^{\mu\nu} + \Big(\zeta_{W} \frac{h}{v_{0}} + \frac{1}{2} \zeta_{2W} \frac{h^{2}}{v_{0}^{2}} \Big) \hat{W}_{\mu\nu}^{+} \hat{W}^{-\mu\nu} \\ &+ \frac{1}{2} \Big(\zeta_{A} \frac{h}{v_{0}} + \frac{1}{2} \zeta_{2A} \frac{h^{2}}{v_{0}^{2}} \Big) \hat{A}_{\mu\nu} \hat{A}^{\mu\nu} + \Big(\zeta_{AZ} \frac{h}{v_{0}} + \zeta_{2AZ} \frac{h^{2}}{v_{0}^{2}} \Big) \hat{A}_{\mu\nu} \hat{Z}^{\mu\nu} \; . \end{split}$$

$$\Delta \mathcal{L}_{eehZ} = g_{LZh}(\overline{e}_L \gamma_\mu e_L) Z^\mu (\frac{h}{v_0} + \frac{1}{2} \frac{h^2}{v_0^2}) + g_{RZh}(\overline{e}_R \gamma_\mu e_R) Z^\mu (\frac{h}{v_0} + \frac{1}{2} \frac{h^2}{v_0^2})$$

$$\begin{split} \Delta \mathcal{L}_{TGC} &= ig_V \Big\{ g_{1V} V^{\mu} (\hat{W}^-_{\mu\nu} W^{+\nu} - \hat{W}^+_{\mu\nu} W^{-\nu}) + \kappa_V W^+_{\mu} W^-_{\nu} \hat{V}^{\mu\nu} \\ &+ \frac{\lambda_V}{m_W^2} \hat{W}^{-\rho}_{\mu} \hat{W}^+_{\rho\nu} \hat{V}^{\mu\nu} \Big\} , \quad V = A, Z \qquad g_{1A} = 1 \qquad g_{1Z} = 1 + \Delta_g \\ &\kappa_A = 1 + \Delta_\kappa \qquad \kappa_Z = 1 + \Delta_g - \frac{s_0^2}{c_0^2} \Delta_\kappa \\ &\lambda_A = \Delta_\lambda \qquad \lambda_Z = \Delta_\lambda , \end{split}$$

In the SM at tree level $g_A = e$ $g_Z = gc_0$ $g_{1V} = \kappa_V = \eta_H = \eta_Z = \eta_{2Z} = \eta_W = \eta_{2W} = 1$, and all others =0

And the CP violating piece $\Delta \mathcal{L}_{CP} = \Delta \mathcal{L}_{hCP} + \Delta \mathcal{L}_{3V_{CP}}$ where

$$\Delta \mathcal{L}_{hCP} = \frac{\tilde{\zeta}_Z}{v_0} \hat{Z}_{\mu\nu} \hat{\widetilde{Z}}^{\mu\nu} h + \frac{1}{2} \frac{\tilde{\zeta}_{ZZ}}{v_0^2} \hat{Z}_{\mu\nu} \hat{\widetilde{Z}}^{\mu\nu} h^2 + 2 \frac{\tilde{\zeta}_W}{v_0} \hat{\widetilde{W}}^+_{\mu\nu} \hat{W}^{-\mu\nu} h + \frac{\tilde{\zeta}_{WW}}{v_0^2} \hat{W}^+_{\mu\nu} \hat{\widetilde{W}}^{-\mu\nu} h^2$$

$$\Delta \mathcal{L}_{3V_{CP}} = i\tilde{\kappa}_{\gamma}W_{\mu}^{\dagger}W_{\nu}\tilde{F}^{\mu\nu} + i\frac{\tilde{\lambda}_{\gamma}}{M_{W}^{2}}W_{\lambda\mu}^{\dagger}W_{\nu}^{\mu}\tilde{F}^{\nu\lambda} + i\tilde{\kappa}_{z}W_{\mu}^{\dagger}W_{\nu}\tilde{F}^{\mu\nu} + i\frac{\tilde{\lambda}_{z}}{M_{W}^{2}}W_{\lambda\mu}^{\dagger}W_{\nu}^{\mu}\tilde{F}^{\nu\lambda}$$

In the SM at tree level all $\tilde{\zeta}_x$, $\tilde{\zeta}_{xx}$, $\tilde{\kappa}_x$, $\tilde{\lambda}_x = 0$

The couplings θ_h , $\eta_x \zeta_x g_{xZH}$, TGC's & EWPO's take the following form in our EFT:

 $\eta_h = (1 - c'_{HL} - \frac{1}{2}c_H + c_6)$ $\theta_h = c_H$ $\eta_Z = (1 - c_T - \frac{1}{2}c_H - c'_{HL})$ $\eta_{2Z} = (1 - 5c_T - c_H - 2c'_{HL})$ $\eta_W = (1 - \frac{1}{2}c_H - c'_{HL})$ $\eta_{2W} = (1 - c_H - c'_{HL})$. $\zeta_W = \zeta_{2W} = 8(c_{WW})$ $\zeta_Z = \zeta_{2Z} = 8(c_0^2 c_{WW} + 2s_0^2 c_{WB} + \frac{s_0^4}{c_0^2} c_{BB})$ $\zeta_{AZ} = \zeta_{2AZ} = 8(s_0 c_0 c_{WW} - s_0 c_0 (1 - \frac{s_0^2}{c^2}) c_{WB} - \frac{s_0^3}{c_0} c_{BB})$ $\zeta_A = \zeta_{2A} = 8s_0^2(c_{WW} - 2c_{WB} + c_{BR})$. $g_{LZh} = -\frac{e_0}{c_0 s_0} (c_{HL} + c'_{HL})$ $g_{RZh} = -\frac{e_0}{c_0 s_0} (c_{HE})$ $\Delta_g = \frac{1}{c_0^2 - s_0^2} \left(\frac{1}{2} c_T - c'_{HL} - 8 \frac{s_0^2}{c_0^2} c_{WB} \right)$ $\Delta_{\kappa} = +8c_{WB}$ $\Delta_{\lambda} = -6\frac{e_0^2}{s_c^2}c_{3W}$

 c_6 is uniquely accessible through the Higgs self coupling measurement. The other 9 EFT parameters appear in several places.

Note the relationship between the SM *hzz* & *hhzz* couplings $\eta_z \& \eta_{zz}$

Precise measurement of $\Gamma(H \rightarrow \gamma \gamma)$ from LHC+ILC will be used to constrain $c_{WW} + c_{BB}$

The TGC's depend on c_T , c'_{HL} , c_{WB} through the Goldstone bosons that are eaten by the Z and W fields

$$\begin{split} m_W^2/m_Z^2 &= c_0^2 + \frac{c_0^2}{c_0^2 - s_0^2} (c_0^2 c_T - 2s_0^2 (c_{HL}' + 8c_{WB}) \\ s_*^2 &= s_0^2 + \frac{s_0^2}{c_0^2 - s_0^2} (c_{HL}' + 8c_{WB} - c_0^2 c_T) - \frac{1}{2} c_{HE} - s_0^2 (c_{HL} - c_{HE}) \\ g_L - g_R &= \frac{1}{2} \frac{e_0}{s_0 c_0} (1 + c_{HL} - c_{HE} + \frac{1}{2} c_T) \end{split}$$

EWPO's also depend on many of the Higgs-related operator coefficients, again through EWSB.

Basic set of observables: $\alpha \equiv \alpha_*(M_Z)$, G_F , m_Z , m_h

$$e_0^2 = 4\pi\alpha , \qquad v_0^2 = 1/\sqrt{2}G_F , \qquad \lambda_0 = m_h^2/2v_0^2 ,$$

$$4s_0^2c_0^2 = \frac{4\pi\alpha}{\sqrt{2}G_Fm_Z^2} \qquad \qquad g_0^2 = e_0^2/s_0^2, \ g_0'^2 = e_0^2/c_0^2$$

The coefficients c_{HL} c'_{HL} c_{HE} c_T c_{WB} c_{3W} are determined by the 3 EWPO's as follows:

$$\begin{split} m_W^2/m_Z^2 &= c_0^2 + \frac{c_0^2}{c_0^2 - s_0^2} (c_0^2 c_T - 2s_0^2 (c_{HL}' + 8c_{WB}) \\ s_*^2 &= s_0^2 + \frac{s_0^2}{c_0^2 - s_0^2} (c_{HL}' + 8c_{WB} - c_0^2 c_T) - \frac{1}{2} c_{HE} - s_0^2 (c_{HL} - c_{HE}) \\ g_L - g_R &= \frac{1}{2} \frac{e_0}{s_0 c_0} (1 + c_{HL} - c_{HE} + \frac{1}{2} c_T) \end{split}$$

and the 3 TGC's

$$\Delta_g = \frac{1}{c_0^2 - s_0^2} \left(\frac{1}{2} c_T - c'_{HL} - 8 \frac{s_0^2}{c_0^2} c_{WB} \right)$$
$$\Delta_\kappa = +8c_{WB}$$
$$\Delta_\lambda = -6 \frac{e_0^2}{s_0^2} c_{3W}$$

At ILC with the full H-20 scenario the error on the TGC's are

$$\Delta(\Delta_{\kappa}) = 2 \times 10^{-4}$$
$$\Delta(\Delta_{g}) = 8 \times 10^{-4}$$

Through EWPOs and ILC measurements of TGC's the number of independent EFT parameters has been reduced from 10 to just 4: $c_H = c_{WW} = c_{BB} = c_6$

With c_T and c'_{HL} tightly constrained by EWPO's &TGC's, c_H is obtained through a measurement of η_Z using a combination of the σ_{ZH} measurement and an angular analysis of $e^+e^- \rightarrow ZH$, $Z \rightarrow e^+e^-$, $\mu^+\mu^-$, $q \overline{q}$ (more on this later).

$$\eta_Z = (1 - c_T - \frac{1}{2}c_H - c'_{HL})$$

With c_{WB} tightly constrained by EWPO's &TGC's. c_{WW} & c_{BB} are obtained through measurements of $\Gamma(H \rightarrow \gamma\gamma)$ (from LHC+ILC) and the HZZ Lorentz structure parameter ζ_Z measured at the ILC with the angular analysis of $e^+e^- \rightarrow ZH$. The relationship between these two measurements and the coefficients c_{WW} & c_{BB} is given by

$$\zeta_A = \zeta_{2A} = 8s_0^2(c_{WW} - 2c_{WB} + c_{BB})$$

$$\zeta_Z = \zeta_{2Z} = 8(c_0^2 c_{WW} + 2s_0^2 c_{WB} + \frac{s_0^4}{c_0^2} c_{BB})$$

Combining LHC and ILC gives $\Delta g_{H\gamma\gamma} = 0.01$

At LCWS16 T. Ogawa obtained $\Delta \zeta_z = 0.001$

Let's now rewrite the Lagrangian using our measured variables $\eta_Z \zeta_Z$ and the one remaining unconstrained EFT parameter c_6

$$\begin{aligned} \mathcal{L} &= -\lambda_0 v_0 \left(\eta_Z - \frac{c_6}{b} \right) h^3 + \frac{2}{v_0} \left(1 - \eta_Z \right) h \partial_\mu h \partial^\mu h + \eta_Z \frac{M_Z^2}{v_0} Z_\mu Z^\mu h + (2\eta_Z - 1) \frac{M_Z^2}{2v_0^2} Z_\mu Z^\mu h^2 \\ &+ \frac{\zeta_Z}{2v_0} Z_{\mu\nu} Z^{\mu\nu} h + \frac{\zeta_Z}{4v_0^2} Z_{\mu\nu} Z^{\mu\nu} h^2 \end{aligned}$$

In this EFT approach all of the couplings in the calculation of $\sigma(e^+e^- \rightarrow HHZ)$ are tightly constrained by the other Higgs coupling measurements, TGC measurements, and EWPT's. The only unconstrained parameter is c_6 . If the best match to the measured $\sigma(e^+e^- \rightarrow HHZ)$ is $c_6 = 0$ within sys+stat errors then we have observed SM Higgs self coupling.

ILC 250+350+500 GeV with 2000+200+4000 fb⁻¹ (H-20 scenario full run \Rightarrow 20.2 yrs)

$$\frac{\Delta\sigma(ZHH)}{\sigma(ZHH)} = 16.8\% \qquad \frac{\Delta\eta_Z}{\eta_Z} = 0.005 \quad \Delta\zeta_Z = 0.001$$

$\sigma(ZHH)$ can be measured with a precision of 16.8% at the ILC

Prospects for the Full ILC Running Scenario

 $\sqrt{s} = 500 \text{ GeV}, \quad \mathcal{L} = 4 \text{ ab}^{-1}, \quad P(e^+e^-) = (\pm 0.3, \pm 0.8)$

Measurement prospects for λ_{SM}

► for HH \rightarrow bbbb

 $rac{\Delta\sigma({
m ZHH})}{\sigma({
m ZHH})} = 21.1\% \
ightarrow \ 5.9\sigma \ {
m discovery}$

 \succ combined with HH \rightarrow bbWW*

 $rac{\Delta\sigma({
m ZHH})}{\sigma({
m ZHH})} = 16.8\% ~
ightarrow~ 8.0\sigma~{
m discovery}$

- \succ results in 26.6% precision on $\lambda_{
 m SM}$
- ➤ advanced reconstruction gives 10% improvement
- > combined with WW fusion @ 1TeV \rightarrow 10% precision on λ_{SM}

Measurement prospects for $\lambda eq \lambda_{\text{SM}}$

- $\succ \sigma_{\text{ZHH}}$ enhanced compared to SM
- less affected by additional diagrams
- > e. g. $\lambda = 2\lambda_{\text{SM}}$ results in 13% precision on λ

Claude Fabienne Dürig | Higgs Self-coupling at the ILC | LCWS 2016, December 6th 2016 | 17/18

Full Simulation Study of Anomalous VVH Couplings at ILC

2016/12/08 LCWS2016 @ Morioka

Tomohisa Ogawa (SOKENDAI) Keisuke Fujii (KEK) Junping Tian (U-Tokyo)

Introduction

- Our convention for anomalous coupling analysis
- Relevant terms of the general Lagrangian which describes the couplings between the Higgs and W, Z bosons are parametrized using dimension-5 operators.

$$\mathcal{L}_{VVH} = 2M_V^2 \frac{1}{\Lambda} \left(\frac{\Lambda}{v} + a\right) H V_{\mu}^+ V^{-\mu} + C_V \frac{b}{\Lambda} H V_{\mu\nu}^+ V^{-\mu\nu} + C_V \frac{\tilde{b}}{\Lambda} H \epsilon^{\mu\nu\rho\sigma} V_{\mu\nu}^+ \tilde{V}_{\rho\sigma}^- \quad \text{(arXiv:1011.5805)}$$
$$(\Lambda = 1 \text{ TeV}, \ C_V = \frac{1}{2}, 1 \text{ for } V = Z, W)$$

- "a" is a simple normalization parameter which affects the overall cross section of processes. (just rescales the SM-coupling)
- "b" has a different spin structure which affects momentum spectra and changes the ratio of couplings to transverse or longitudinal components.
- "bt" is a CP-violating parameter which affects angular/spin correlations.
- The strategy to estimate sensitivity to the anomalous parameters is to use kinematical information of final state particles such as momentum spectra and spin correlations.
 - · Precise reconstruction is needed to catch slight deviations from predictions of the SM.

Strategy of Shape Analysis

• The definition of $\chi 2$ function to estimate sensitivity. (2-dimensional distribution)

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^n \left[\frac{N^{SM}(x_{ij}) \cdot f_{ij} - N^{BSM}(x_{ij}; a, b, \tilde{b}) \cdot f_{ij}}{\delta N^{SM}(x_{ij})} \right]^2 + \left[\frac{N^{SM} \cdot \epsilon - N^{BSM} \cdot \epsilon}{\delta \sigma \cdot N^{SM} \cdot \epsilon} \right]^2$$

- f_{ij} is overall acceptance which includes the detector response function.
- δN is an error of remaining signals for each bin (kinematical shapes are binned.) which are estimated by full simulation.
 - Background suppression -
 - Any angular variables are not applied for background suppression.
 - · Momentum variables are also restricted.
 - Every cut values are optimized to get the best significance point.

$$Signif = \frac{N_{sig}}{\sqrt{N_{sig} + N_{bkg}}}$$

- N is the expected/calculated number of events.
- ε is selection efficiency of a signal process.
- $\delta\sigma$ is an error of a cross section of a signal process, which is estimated by full simulation.
 - + $\delta\sigma$ is set to 2.0% for a 250 GeV process and 3.0% for 500 GeV process.

- Three parameters are completely free
- Scale to H20 senario
- Considering processes are only ZZH

	(-,+)	(+,-)
\sqrt{s}	$[fb^{-1}]$	$[fb^{-1}]$
250 GeV	1350	450
350 GeV	135	45
500 GeV	1600	1600

$$\mathcal{L}_{VVH} = 2M_V^2 \frac{1}{\Lambda} \left(\frac{\Lambda}{v} + a\right) H V_{\mu}^+ V^{-\mu} + C_V \frac{b}{\Lambda} H V_{\mu\nu}^+ V^{-\mu\nu} + C_V \frac{\tilde{b}}{\Lambda} H \epsilon^{\mu\nu\rho\sigma} V_{\mu\nu}^+ \tilde{V}_{\rho\sigma}^- (\Lambda = 1 \text{ TeV}, \ C_V = \frac{1}{2}, 1 \text{ for } V = Z, W)$$

Preliminary

- $a = 0 \pm 0.021$
- $b = 0 \pm 0.0050$ $\tilde{b} = 0 \pm 0.0057$

 $\left(\begin{array}{rrrr} 1 & -0.8 & 0.01 \\ -0.8 & 1 & 0.02 \\ 0.01 & 0.02 & 1 \end{array}\right)$ correlation matrix

$$\eta_{Z} = 2\left(1 + \frac{v_{0}}{\Lambda}a\right) \qquad \qquad \frac{\Delta\eta_{Z}}{\eta_{Z}} = \frac{v_{0}}{\Lambda}\Delta a = \frac{1}{4}\Delta a = 0.005$$
$$\zeta_{Z} = \frac{v_{0}}{\Lambda}b \qquad \qquad \Delta\zeta_{Z} = \frac{v_{0}}{\Lambda}\Delta b = \frac{1}{4}\Delta b = 0.001$$

Let's include operator coefficients constrained by TGC's & EWPO's.

$$\begin{aligned} \mathcal{L} &= -\lambda_0 v_0 \left(\eta_Z + c_T - c_6 \right) h^3 + \frac{2}{v_0} \left(1 - \eta_Z - c_T - c'_{HL} \right) h \partial_\mu h \partial^\mu h + \eta_Z \frac{M_Z^2}{v_0} Z_\mu Z^\mu h \\ &+ (2\eta_Z - 1 - 3c_T) \frac{M_Z^2}{2v_0^2} Z_\mu Z^\mu h^2 + \frac{\zeta_Z}{2v_0} Z_{\mu\nu} Z^{\mu\nu} h + \frac{\zeta_Z}{4v_0^2} Z_{\mu\nu} Z^{\mu\nu} h^2 \\ &- \frac{e_0}{c_0 s_0} \Big[(c_{HL} + c'_{HL}) (\overline{e}_L \gamma_\mu e_L) + c_{HE} (\overline{e}_R \gamma_\mu e_R) \Big] Z^\mu \left(\frac{h}{v_0} + \frac{1}{2} \frac{h^2}{v_0^2} \right) \\ &\frac{2}{W} / m_Z^2 = c_0^2 + \frac{c_0^2}{2} (c_0^2 c_T - 2s_0^2 (c'_{HL} + 8c_{WB}) \end{aligned}$$

$$\begin{split} m_W^2/m_Z^2 &= c_0^2 + \frac{3}{c_0^2 - s_0^2} (c_0^2 c_T - 2s_0^2 (c_{HL}^2 + 8c_{WB}) \\ s_*^2 &= s_0^2 + \frac{s_0^2}{c_0^2 - s_0^2} (c_{HL}^2 + 8c_{WB} - c_0^2 c_T) - \frac{1}{2} c_{HE} - s_0^2 (c_{HL} - c_{HE}) \\ g_L - g_R &= \frac{1}{2} \frac{e_0}{s_0 c_0} (1 + c_{HL} - c_{HE} + \frac{1}{2} c_T) \\ \Delta_g &= \frac{1}{c_0^2 - s_0^2} (\frac{1}{2} c_T - c_{HL}^\prime - 8\frac{s_0^2}{c_0^2} c_{WB}) \\ \Delta_\kappa &= +8c_{WB} \end{split}$$

 $c_{T}, c'_{HL}, c_{HL}, c_{HE} \text{ are linear combinations of } M_{W}^{2} / M_{Z}^{2}, s_{*}^{2}, (g_{L} - g_{R}), \Delta_{g}, \Delta_{\kappa}$ $\frac{\Delta(M_{W}^{2})}{M_{Z}^{2}} = 0.00029 \qquad \Delta s_{*}^{2} = 0.00035 \qquad \text{At ILC with the full H-20 scenario}$ $\frac{\Delta(g_{L} - g_{R})}{g_{L} - g_{R}} = \frac{1}{2} \left[\left(\frac{\Delta\Gamma(Z \to e^{+}e^{-})}{\Gamma(Z \to e^{+}e^{-})} \right)^{2} + \left(\frac{\Delta s_{*}^{2}}{s_{*}^{2}} \right)^{2} \right] = 0.00015 \qquad \Delta(\Delta_{\kappa}) = 0.0002 \qquad \Delta\zeta_{Z} = 0.001$

Higgs precision physics at linear and circular e⁺e⁻ colliders

Nathaniel Craig University of California, Santa Barbara

Based in part on work by T. Barklow, and on work done for this talk

International Workshop on Future Linear Colliders

VS2016

Higgs Force Observables

If new particles are light, look for them directly via on-shell or off-shell Higgs.

If new particles are heavy, integrate out and go to dim-6 EFT

Integrating out singlet physics only generates O_H, O₆ at dim-6

So O_H, O₆ completely characterize Higgs coupling deviations from Standard Model singlets at dim-6

Bounding the Higgs Force

Measure Zh, ZZh, keep track of c₆, c_H everywhere

Already understand effects in Zh

Need to track of c_6 , c_H effects at ILC in ZZh

Measurement prospects for λ_{SM}

 c_H shows up in h^3 and $h\partial h\partial h$

Note: their conventions for c_{H} , c_{6} . Convert to mine, can check that I reproduce quoted trilinear bound.

Bounding the Higgs Force

Summary

- In an EFT approach all but one of the couplings in the calculation of $\sigma(e^+e^- \rightarrow HHZ)$ are tightly constrained by the other Higgs coupling measurements, TGC measurements, and EWPT's.
- The unmeasured ZZHH quartic coupling is related to the HZZ couplings, which are measured to 0.1% 0.5% at the ILC in the H-20 scenario. The systematic error due to the unmeasured quartic coupling is therefore very small. A full error analysis is underway to propagate the errors due to all EWPO, TGC and Higgs measurements.
- A simplified similar analysis using e⁺e⁻ → ZH only at CEPC indicates, on the one hand, that a measurement of double Higgs production from someplace else is required to close the limit contours in (c₆, c_H) space. But it also demostrates that the CEPC improves the (c₆, c_H) limits compared to HL-LHC or ILC alone.
- It is not sufficient, in the context of EFT's, to measure σ(ZH) in order to obtain the hZZ coupling. The Higgsstrahlung cross section σ(ZH) = f(η_z, ζ_z) and so one must also perform the angular analysis of e⁺e⁻ → ZH , Z → e⁺e⁻, μ⁺μ⁻, q q̄ in order to distinguish η_z from ζ_z. This angular analysis is therefore not some backwater BSM search, but rather a Higgs measurement of fundamental importance at √s = 250 GeV.