Probing 6D Operators at Higgs Factories

Tao Liu
The Hong Kong University of Science and Technology

In collaboration with Wenhan Chiu, Iris Leung Kunfeng Lyu and Liantao Wang In progress...

Higher Dimensional Operator

New physics can be parametrized as HDOs (totally 59 six-dim ones)

$$\mathcal{L} = \mathcal{L} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_{6,i}$$

The ones (CP-even) relevant to this study

$$\mathcal{O}_{WW} = g^{2}|H|^{2}W_{\mu\nu}^{a}W^{a,\mu\nu}$$

$$\mathcal{O}_{BB} = g'^{2}|H|^{2}B_{\mu\nu}B^{\mu\nu}$$

$$\mathcal{O}_{WB} = gg'H^{\dagger}\sigma^{a}HW_{\mu\nu}^{a}B^{\mu\nu}$$

$$\mathcal{O}_{H} = \frac{1}{2}(\partial_{\mu}|H|^{2})^{2}$$

$$\mathcal{O}_{T} = \frac{1}{2}(H^{\dagger}D_{\mu}H)^{2}$$

$$\mathcal{O}_{L}^{(3)\ell} = (iH^{\dagger}\sigma^{a}D_{\mu}H)(\bar{L}_{L}\gamma^{\mu}\sigma^{a}L_{L})$$

$$\mathcal{O}_{LL}^{(3)\ell} = (\bar{L}_{L}\gamma_{\mu}\sigma^{a}L_{L})(\bar{L}_{L}\gamma^{\mu}\sigma^{a}L_{L})$$

$$\mathcal{O}_{LL}^{(3)\ell} = (iH^{\dagger}D_{\mu}H)(\bar{L}_{L}\gamma^{\mu}L_{L})$$

$$\mathcal{O}_{L}^{\ell} = (iH^{\dagger}D_{\mu}H)(\bar{L}_{L}\gamma^{\mu}L_{L})$$

$$\mathcal{O}_{R}^{e} = (iH^{\dagger}D_{\mu}H)(\bar{e}_{R}\gamma^{\mu}e_{R})$$

$$+ \mathcal{O}_{6H} = (H^{\dagger}H)^3$$

Contributions to Observables

- Direct contribution to existing vertices
- Contribution by field redefinition
- EW parameter shift (fine-structure constant, mZ, Fermi constant)
- New vertices could be introduced

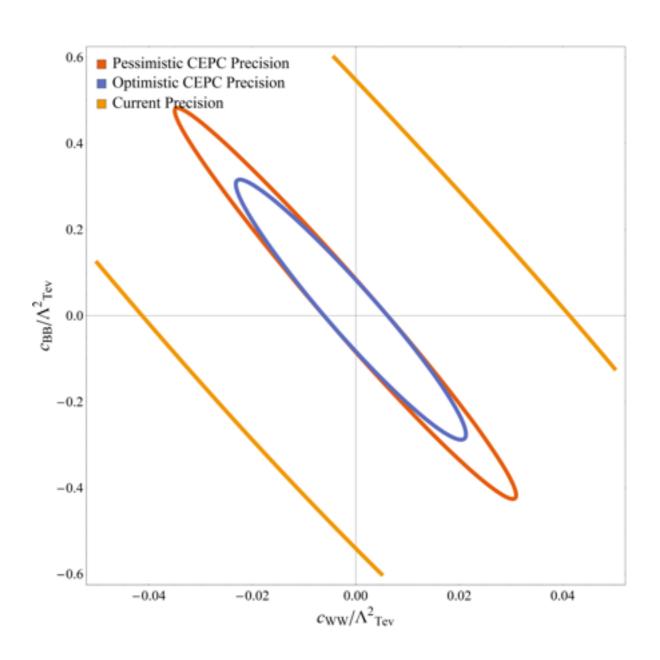
Partial List of Studies

- Higgs measurement, EWPT, and di-gauge boson production (arXiv: 1507.02238, L. Bian, J. Shu, et. al.)
- E.g., e+e- -> ZH
 - Integrated signal rate (arXiv: 1411.0676, N. Craig et. al; arXiv:1603.03385, S.F Ge, H.J. He, et. al)
 - integrated angular asymmetry (arXiv: 1512.06877, N. Craig, Z. Liu et. al)
 -

Fitting Strategy

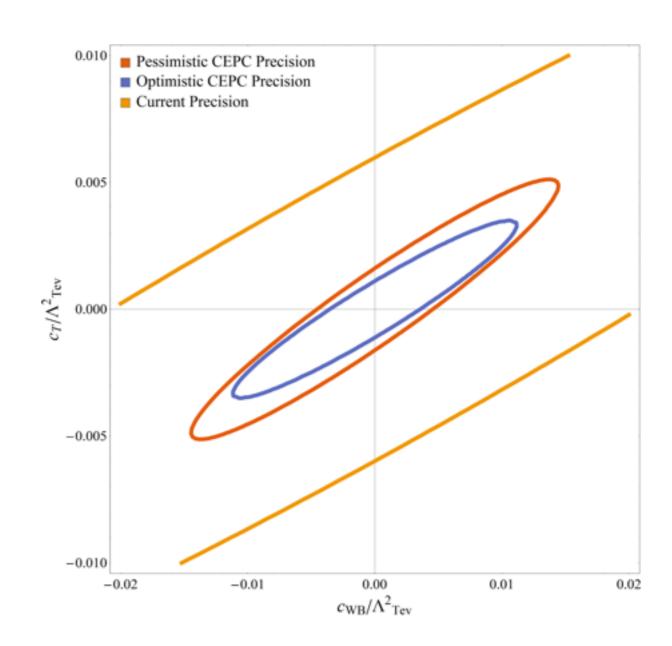
- Typically single operator is constrained in literatures
- Sometimes the correlation could be important
 - HDOs might exist in the same model or theory
 - Diff HDOs might contribute to the same observable
- We will address this in our analyses
 - Derive LO corrections to the SM predictions
 - cross section data obtained using CalcHEP

Inputs

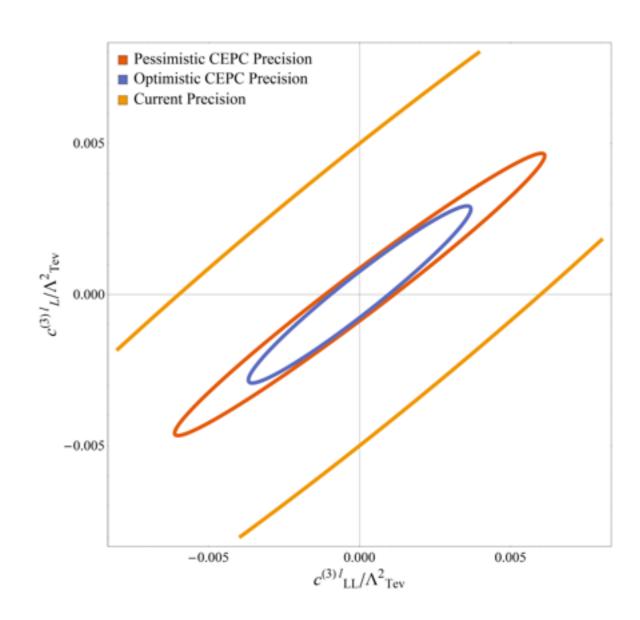

	Current Precision	Expected Precision
M_Z	2.3×10^{-5}	$0.55 - 1.1 \times 10^{-5}$
G_F	5.14×10^{-7}	_
α	3.29×10^{-10}	_
$\sigma(ZH)_{250}$	_	0.51%
$\sigma(\nu\bar{\nu}H)_{350}$	_	0.75% (FCC-ee)
$\sigma(ZHH)_{500}$	_	13.5 - 23.7% (ILC)
M_W	1.87×10^{-4}	$3.7 - 6.2 \times 10^{-5}$
$N_{ u}$	0.27%	0.1%
$A_{ m fb}^b$	1.7%	0.15%
R_b	0.3%	0.08%
$R_{ au}$	0.2%	0.05%
R_{μ}	0.2%	0.05%
$\sin^2 heta_W^{ m eff}$	0.07%	0.01%

Single Parameter Fit

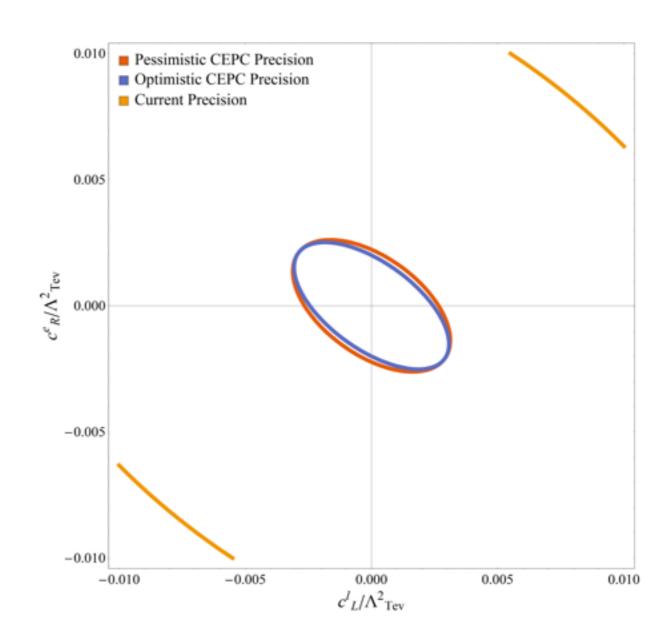
	$N_{ u}$	A_{FB}^b	R_b	R_{μ}	$R_{ au}$	$\sin^2 heta_W^{ m eff}$	M_W	$\sigma(ZH)$	$\sigma(\nu\bar{\nu}H)_{350}$
$c_{WW}/\Lambda_{\rm TeV}^2$	_	0.00908	0.183	0.0223	0.0223	-0.00583	-0.103	0.0224	-0.767
$c_{BB}/\Lambda_{ m TeV}^2$	_	0.124	2.532	0.307	0.307	-0.0793	0.473	0.684	_
$c_{WB}/\Lambda_{\mathrm{TeV}}^2$	_	-0.00734	0.238	0.167	0.166	0.00429	-0.00598	0.155	-0.272
$c_T/\Lambda_{ m TeV}^2$	0.0297	0.00330	-0.200	0.0894	0.09	-0.00196	0.00141	-0.124	0.0228
$c_{LL}^{(3)l}/\Lambda_{\mathrm{TeV}}^2$	-0.0149	-0.00165	0.100	-0.0448	-0.0451	0.000983	0.00246	0.0172	0.0138
$c_L^{(3)l}/\Lambda_{ m TeV}^2$	0.0149	0.00122	-0.100	0.00401	-0.045	0.000721	-0.00246	0.00813	-0.0251
$c_L^l/\Lambda_{ m TeV}^2$	_	0.00463	1	0.00367	-0.00400	0.00269	_	0.00469	_
$c_R^e/\Lambda_{ m TeV}^2$	_	0.00341	-	0.005	-0.00368	0.001986	_	-0.00699	_
$c_H/\Lambda_{ m TeV}^2$	_	_	_	_	_	_	_	-0.0799	-0.131


$c_{WW} - c_{BB}$ fit

- Fit using: $\sigma(ZH)$, M_W and $\sin^2 \theta_W^{\rm eff}$
- Optimistic constraints:
 5 ab⁻¹ of 250 GeV data at CEPC,
 100 150 fb⁻¹ of precision data,
 minimal systematics for precision
 EW measurements
- Pessimistic constraints:
 5 ab⁻¹ of 250 GeV data at CEPC,
 100 150 fb⁻¹ of precision data,
 systematics same order as statistical


$c_{WB} - c_T$ fit

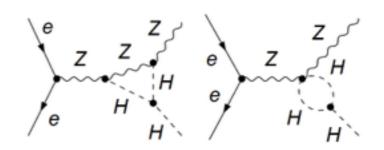
- Fit using: M_W and $\sin^2 \theta_W^{\text{eff}}$
 - Optimistic constraints:
 150 fb⁻¹ of precision data,
 minimal systematics for Z-Pole and precision EW measurements at CEPC
 - Pessimistic constraints:
 150 fb⁻¹ of precision data,
 systematics same order as statistical

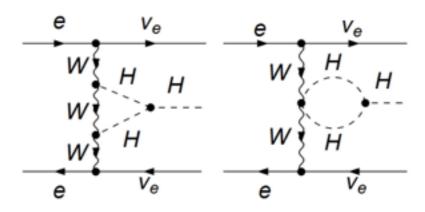

$$c_{LL}^{(3)l} - c_L^{(3)l}$$
 fit

- Fit using: M_W and $\sin^2 \theta_W^{\text{eff}}$
 - Optimistic constraints:
 150 fb⁻¹ of precision data,
 minimal systematics for Z-Pole and precision EW measurements at CEPC
 - Pessimistic constraints:
 150 fb⁻¹ of precision data,
 systematics same order as statistical

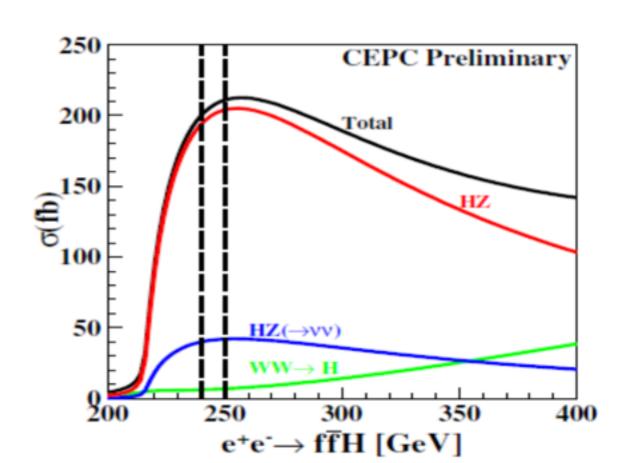
$$c_L^l - c_R^e$$
 fit

- Fit using: $\sigma(ZH)$, R_{τ} and $\sin^2 \theta_W^{\rm eff}$
 - Optimistic constraints:
 5 ab⁻¹ of 250 GeV data at CEPC,
 100 150 fb⁻¹ of precision data,
 minimal systematics for Z-Pole and
 precision EW measurements
 - Pessimistic constraints:
 5 ab⁻¹ of 250 GeV data at CEPC, 100 - 150 fb⁻¹ of precision data, systematics same order as statistical

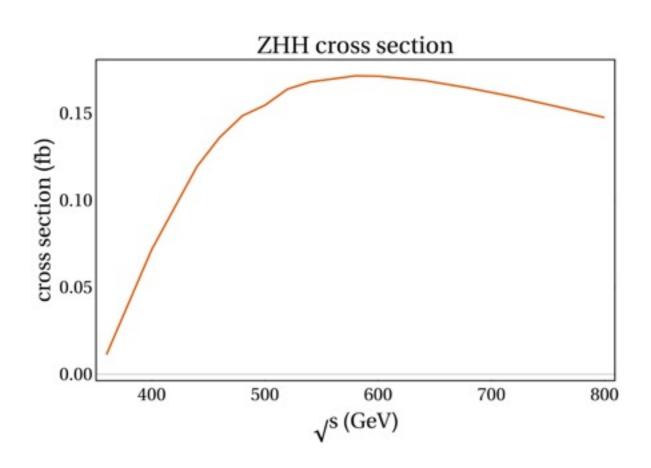

Effect of O6H

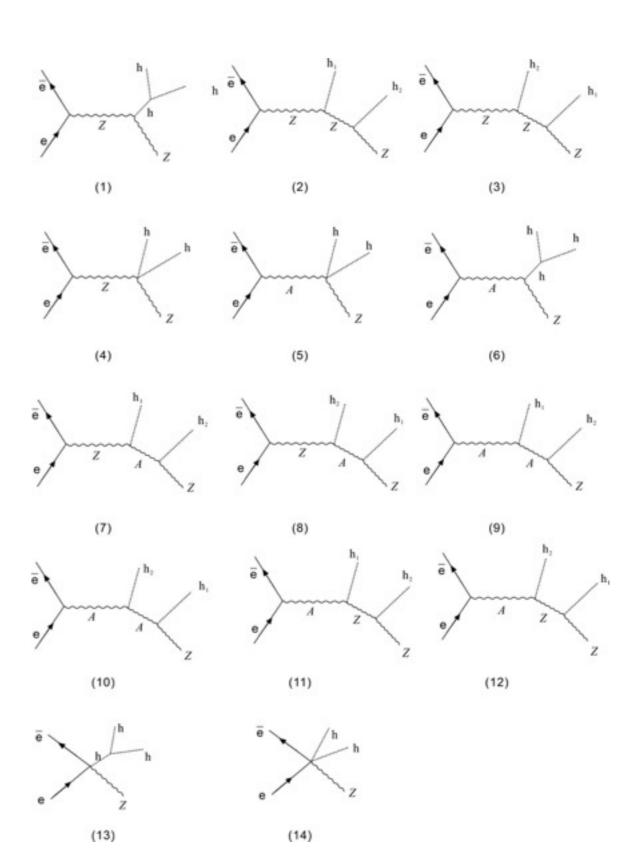

Higgs potential modified

$$V = -\mu^{2}(H^{\dagger}H)^{2} + \lambda(H^{\dagger}H)^{4} - C_{6H}\frac{(H^{\dagger}H)^{3}}{\Lambda^{2}}$$


But v is invariant $\Rightarrow \mu$ and λ are modified Modified triple Higgs coupling:

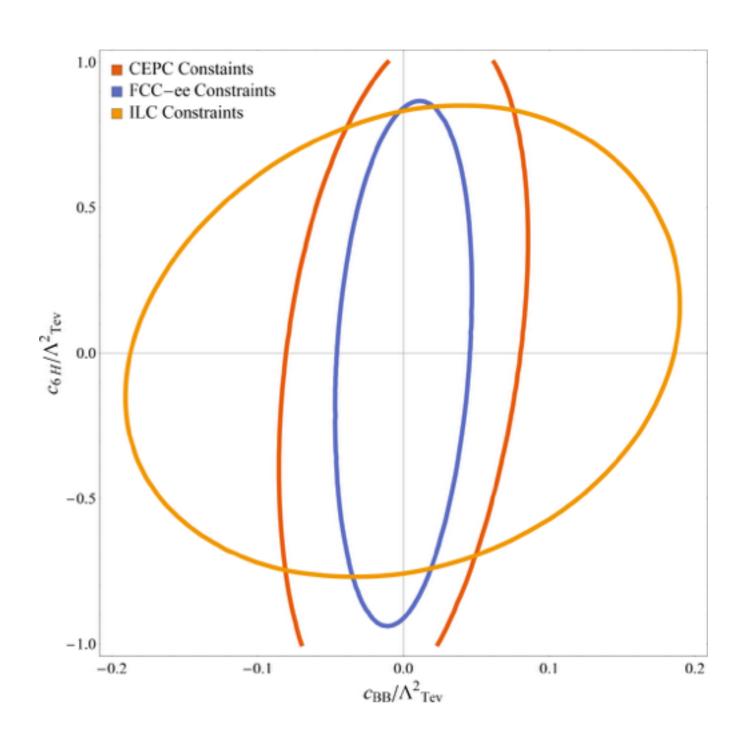
$$C_{h^3} = -i\frac{3m_h^2}{v} \left(1 - \frac{2c_{6H}v^4}{m_h^2\Lambda^2} \right)$$
$$= -i\frac{3m_h^2}{v} \left(2 - 0.4703 \frac{c_{6H}}{\Lambda_{\text{TeV}}^2} \right)$$




The loop diagrams containing h^3 coupling. There are no UV divergences

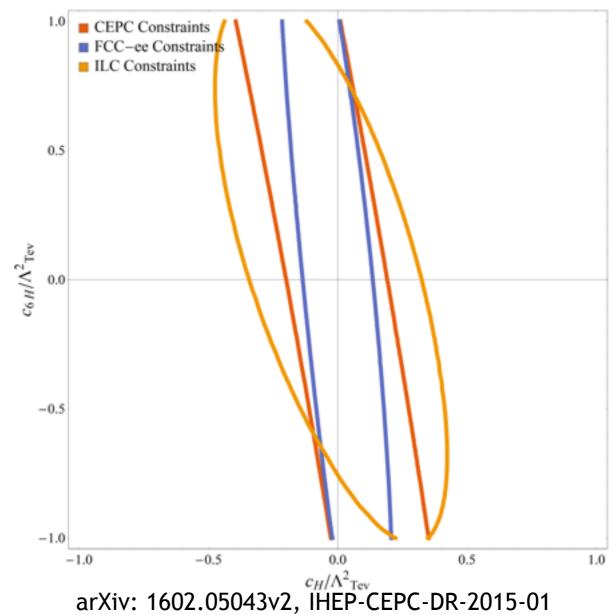
General Comments on ZHH

Contribute to Zhh at tree level!


Cross Section Constraints on O6H

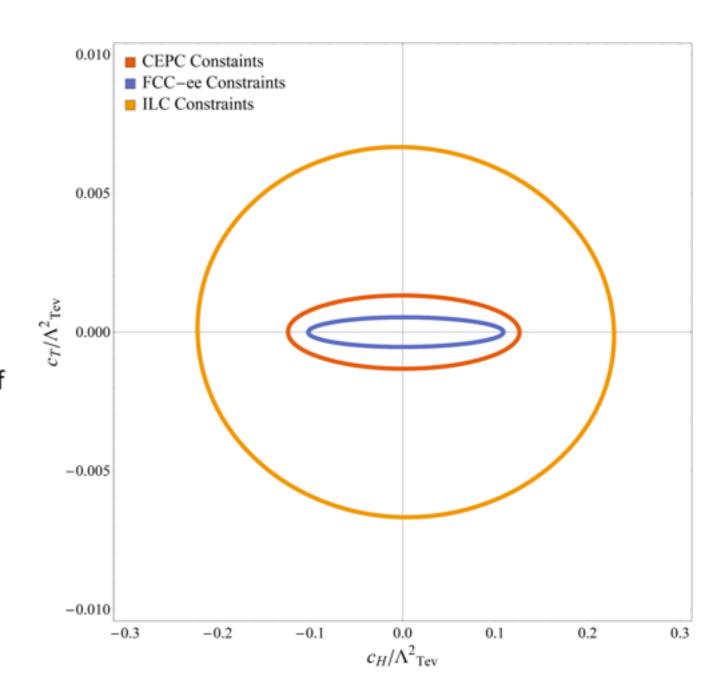
Channel	Expected Precision		
ZH (250GeV CEPC)	0.5%		
ZH(240 GeV FCC-ee)	0.4%		
ZH (250GeV 2 ab ⁻¹ ILC)	0.9%		
$\nu \bar{\nu} H (350 \text{GeV FCC-ee})$	0.75%		
ZHH (500GeV 4 ab ⁻¹ ILC)	15.1%		

arXiv: 1602.05043v2 IHEP-CEPC-DR-2015-01 arXiv: 1506.07830v1 arXiv: 1310.0763v3


Fitting with O6H

- Fit using: $\sigma(ZH)$, $\sigma(ZHH)_{500}$ and $\sin^2\theta_W^{\rm eff}$
- ILC Constraints:
 2 ab⁻¹ at 250 GeV, 4 ab⁻¹ at 500 GeV and no Z-Pole measurements
- CEPC constraints:
 5 ab⁻¹ of 250 GeV data at CEPC,
 150 fb⁻¹ of precision data, minimal systematics
- FCC-ee constraints: $10~\rm ab^{-1}$ of 240 GeV data, 220 $\rm ab^{-1}$ of precision data

Fitting with O6H


- Fit using: $\sigma(ZH)$, $\sigma(\nu\bar{\nu}H)_{350}$ and $\sigma(ZHH)_{500}$
 - CEPC Constraints: 5 ab^{-1} of 250 GeV data at CEPC
 - FCC-ee constraints: $10 \text{ ab}^{-1} \text{ of } 240 \text{ GeV data}, 2.5 \text{ ab}^{-1}$ of 350 GeV data
 - ILC Constraints: 2 ab^{-1} at 250 GeV and 4 ab^{-1} at 500 GeV and no Z-Pole measurements

arXiv: 1506.07830v1, arXiv: 1310.0763v3

Fitting with O6H

- Fit using: $\sigma(ZH)$, $\sigma(\nu\bar{\nu}H)_{350}$ and M_W
 - CEPC constraints:
 5 ab⁻¹ of 250 GeV data at CEPC,
 150 fb⁻¹ of precision data, minimal systematics
- FCC-ee constraints:
 10 ab⁻¹ of 240 GeV data, 2.5 ab⁻¹ of 350 GeV data, 220 ab⁻¹ of precision data
- ILC Constraints:
 2 ab⁻¹ at 250 GeV

Summary

- Correlation among the HDOs are important
- This effect should be incorporated while analyzing the sensitivities at future Higgs factories
- A comparative study is on the way