

Searching exotic decay channels of the SM Higgs boson at CEPC

Hao Zhang

Institute of High Energy Physics, Chinese Academy of Sciences For CEPC Workshop, Dec 13-15, 2016, Beijing

Base on the work in collaboration with Zhen Liu and Lian-Tao Wang.

The SM-like Higgs boson

The last fundamental particle in the SM.

The SM-like Higgs boson

The last fundamental particle in the SM.

The SM-like Higgs boson

- Question: Can we remove the word "like"?
 - 1. The new physics comes into the Higgs sector at Λ .

The "like" could be removed when the scale is much lower than $\boldsymbol{\Lambda}$

2. Some light degrees of freedom couple to the Higgs boson.

What can we do at CEPC?

 Z^* CEPC: a Higgs factory

• More than 1,000,000 ZH signal events in the SM!

 $m_{\text{recoil}}^2 \equiv \left(\sqrt{s} - E_{f\bar{f}}\right)^2 - \overrightarrow{p}_{f\bar{f}}^2 = s - 2E_{f\bar{f}}\sqrt{s} + m_{f\bar{f}}^2$

CEPC-SPPC preCDR, Volume I-Physics & Detector, The CEPC-SPPC Study Group

CEPC: a Higgs factory

• The combination of different Z decay modes gives:

CEPC: a Higgs factory

• The combination of different Z decay modes gives:

CEPC-SPPC preCDR, Volume I-Physics & Detector, The CEPC-SPPC Study Group

Higgs sector NP at CEPC

- Case 1: usually the LHC and future pp-colliders can do a better job due to the high c.m. energy. CEPC can probably give some constraints or hints with indirect measurements.
- Case 2: exotic Higgs decay signal!
 - SUSY model: MSSM, NMSSM, ...
 - Warped Extra Dimension model: light radion;
 - Hidden valley with Higgs boson as the mediator: "Higgs portal";
 - Dark matter: dark force, ...
 - Bayrogenesis: exotic light scalar;
 - Neutrino mass: *N*-loop radiative seasaw;

- Phenomenology: investigate the detail of the signals.
- Topology \Rightarrow Insert fields \Rightarrow signals at CEPC.
- Example:

Insert fields

SM particles measured by the detector, dark matter

 $h \rightarrow 2 \rightarrow 4$

- Some assumptions:
 - The first decay is two-body decay;
 - In the final state, there are only SM particles or missing energy.

Insert fields

SM particles measured by the detector, dark matter

 $h \rightarrow 2 \rightarrow 4$

- Some assumptions:
 - The first decay is two-body decay;
 - In the final state, there are only SM particles or missing energy.

/	Decay Topologies	Decay mode \mathcal{F}_i	Decay Topologies	Decay mode \mathcal{F}_i
~	$h \rightarrow 2$	$h ightarrow E_{ m T}$	$h \to 2 \to 4$	$h \to (b\bar{b})(b\bar{b})$
\backslash	$h \rightarrow 2 \rightarrow 3$	$h \to \gamma + \not\!\!\!E_{\mathrm{T}}$	-	$h \to (b\bar{b})(\tau^+\tau^-)$
		$h \to (b\overline{b}) + E_{\mathrm{T}}$		$h \to (b\bar{b})(\mu^+\mu^-)$
		$h \to (jj) + \not\!\!\!E_{\mathrm{T}}$		$h \to (\tau^+ \tau^-)(\tau^+ \tau^-)$
		$h \to (\tau^+ \tau^-) + \not\!\!\!E_{\rm T}$		$h \to (\tau^+ \tau^-)(\mu^+ \mu^-)$
		$h \to (\gamma \gamma) + E_{\rm T}$		$h \to (jj)(jj)$
		$h \to (\ell^+ \ell^-) + \not\!\!\!E_{\rm T}$	_	$h ightarrow (jj)(\gamma\gamma)$
	$h \to 2 \to 3 \to 4$	$h \rightarrow (bb) + E_{\mathrm{T}}$		$h \rightarrow (jj)(\mu^+\mu^-)$
		$h \rightarrow (jj) + E_{\mathrm{T}}$		$h \to (\ell^+ \ell^-)(\ell^+ \ell^-)$
		$h \to (\tau^+ \tau^-) + \not\!\!\!\!/ _{\mathrm{T}}$		$h \to (\ell^+ \ell^-)(\mu^+ \mu^-)$
		$h \rightarrow (\gamma \gamma) + \not\!$		$h \to (\mu^+ \mu^-)(\mu^+ \mu^-)$
	\mathbf{i}	$h \to (\ell^+ \ell^-) + \not\!$		$h ightarrow (\gamma \gamma) (\gamma \gamma)$
	$L \rightarrow 0 \rightarrow (1 + 2)$	$\frac{n \to (\mu^+ \mu^-) + \mu_{\rm T}}{h \to h \overline{h} + \overline{\mu}}$	\langle	$h ightarrow \gamma \gamma + E_{ m T}$
	$n \to 2 \to (1+3)$	$n \rightarrow 00 + E_{\rm T}$		$h \to (\ell^+ \ell^-)(\ell^+ \ell^-) + \not\!\!\!E_{\mathrm{T}}$
	\leftarrow	$h \to jj + \mu_{\rm T}$ $h \to \tau^+ \tau^- + E_{\rm T}$		$h \to (\ell^+ \ell^-) + \not\!\!E_{\mathrm{T}} + X$
		$ \begin{array}{c} n \rightarrow \gamma \gamma + \mu \gamma \\ h \rightarrow \gamma \gamma + E_{\rm T} \end{array} $	$\checkmark \hline h \rightarrow 2 \rightarrow 6$	$h \to \ell^+ \ell^- \ell^+ \ell^- + \not\!\!\!E_{\rm T}$
		$h \to \ell^+ \ell^- + E_{\rm T}$		$h \to \ell^+ \ell^- + \not\!\!E_{\rm T} + X$
			\sim	

• What can we do with HL-LHC?

PHYSICAL REVIEW D 90, 075004 (2014)

Exotic decays of the 125 GeV Higgs boson

David Curtin,^{1,a} Rouven Essig,^{1,b} Stefania Gori,^{2,3,4,c} Prerit Jaiswal,^{5,d} Andrey Katz,^{6,e} Tao Liu,^{7,f} Zhen Liu,^{8,g} David McKeen,^{9,10,h} Jessie Shelton,^{6,i} Matthew Strassler,^{6,j} Ze'ev Surujon,^{1,k} Brock Tweedie,^{8,11,1} and Yi-Ming Zhong^{1,m}

• For some channels the results are bad.

TABLE XIII. As in Table XII, estimates for various processes in $h \rightarrow aa$ if a decays only to SM gauge bosons through loops. The central columns show the case where the couplings are generated by initially degenerate SU(5) multiplets; the right columns show the case where the $a \rightarrow \gamma\gamma$ rate is enhanced by a factor of 10. An asterisk denotes that all 14 TeV estimates shown require 300 fb⁻¹ of data.

			Br(a	$\rightarrow \gamma \gamma) \approx 0.004$	Br(a	$\rightarrow \gamma \gamma) \approx 0.04$	
Decay mode \mathcal{F}_i	Projected/current 2σ limit on Br(\mathcal{F}_i) 7 + 8 [14] TeV	Production mode	$\frac{\text{Br}(\mathcal{F}_i)}{\text{Br}(\text{non-SM})}$	Limit on $\frac{\sigma}{\sigma_{SM}} \cdot Br(non-SM)$ 7 + 8 [14] TeV	$\frac{\text{Br}(\mathcal{F}_i)}{\text{Br}(\text{non-SM})}$	Limit on $\frac{\sigma}{\sigma_{SM}} \cdot Br(non-SM)$ 7 + 8 [14] TeV	Comments
jjjj	> 1 [0.1*]	W	0.99	> 1 [0.1*]	0.92	> 1 [0.1*]	Theory study [220,269], Sec. VII

ATLAS Collaboration, EPJC 76, 605 (2016)

- Phenomenology:
 - Parton level simulation.
 - Detector effects (energy resolution, PID efficiency):

- Phenomenology:
 - Parton level simulation.
 - Detector effects (energy resolution, PID efficiency).
 - b-tagging efficiency:

From Manqi's slide: Higgs analysis and Detector Optimization at CEPC, 2016/02/09

- Phenomenology:
 - Preselection cuts: $|\cos \theta_{j,\ell}| < 0.98, E_{j,\ell} > 10 \text{GeV},$ $2 \min \left(E_i^2, E_j^2 \right) \left(1 - \cos \theta_{i,\ell} \right)$

$$y_{ij} \equiv \frac{2\min\left(E_i^2, E_j^2\right)\left(1 - \cos\theta_{ij}\right)}{E_{vis}^2} > y_{cut},$$

a pair of OSSF leptons, $\theta_{\ell\ell} > 80^\circ$
 $|m_{\ell\ell} - m_Z| < 10 \text{GeV}, |m_{\text{recoil}} - m_h| < 5 \text{GeV}.$

- MadGraph5_aMC@NLO.
- The ISR effect of the background is roughly mimicked by generating events with 1 additional photon (with pT>1GeV to avoid the IR divergence). (No ISR for signal events!)
- Additional cut to suppress the ISR effect: $E_{vis} > 225 \text{GeV}$.

• The topology

• Benchmark model: supersymmetry.

 $e^+e^- \rightarrow \ell^+\ell^- \nu_\ell \bar{\nu}_\ell jj$

- 4-jet channel:
 - $h \rightarrow 2 \rightarrow 4$
 - Insert light (pseudo)scalar (a, s) or vector boson (Z').
 - $h \rightarrow ss(aa) \rightarrow (jj)(jj), h \rightarrow Z'Z' \rightarrow (jj)(jj).$
 - Effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \sqrt{2}\varepsilon_s vhss + \sqrt{2}\varepsilon_a vhaa + \varepsilon_1 g'_1 vhZ'_{1\mu} Z'^{\mu}_1 + \varepsilon_2 g'_2 vhZ'_{2\mu} Z'^{\mu}_2 + y_s s\bar{f}f + iy_a a\bar{f}\gamma_5 f + \frac{\alpha_s c_s}{\Lambda_s} sG_{\mu\nu}G^{\mu\nu} + \frac{\alpha_s c_a}{\Lambda_a} aG_{\mu\nu}\tilde{G}^{\mu\nu} + g'_1 Z'_{1\mu}\bar{f}\gamma^{\mu}f + g'_2 Z'_{2\mu}\bar{f}\gamma^{\mu}P_R f$$

Spin correlations are kept for model distinguishing.

• Additional cut:
$$\delta m \equiv \min_{\sigma \in A_4} \left| m_{j_{\sigma(1)} j_{\sigma(2)}} - m_{j_{\sigma(3)} j_{\sigma(4)}} \right| < 5 \text{GeV}.$$

• Additional cut: $\delta m \equiv \min_{\sigma \in A_4} \left| m_{j_{\sigma(1)} j_{\sigma(2)}} - m_{j_{\sigma(3)} j_{\sigma(4)}} \right| < 5 \text{GeV}.$

Summary and outlook

- CEPC is a Higgs factory. 1,000,000 Higgs events with 5ab⁻¹.
- Precisely measurement of the properties of the SM Higgs boson.
- A ideal machine for studying the exotic Higgs decay channels.
- More than an order of magnitude improvement can be achieved without any advanced technology.

Thank you!

