

QCD measurements at the future Circular **Electron-Positron Collider**

Jun Gao

INPAC, Shanghai Jiao Tong University Dec 15, 2016

CEPC workshop, IHEP, Beijing

SHANGHAI JIAO TONG UNIVERSITY

Lepton Colliders

 Ideal machine for study of precision physics; well predicted and controlled backgrounds; fixed initial state energy

anatomy of hadronic events at lepton colliders

- EW, Higgs physics
- Flavor, hadronic physics
- Top-quark physics
- Dark matter and new physics
- QCD and Jet physics

QCD and Jets

 Seminal contributions to the establishment of QCD from experimental study at lepton colliders

evolution of lepton colliders

RPL 35, 1609 (1975), SLAC-LBL

QCD and Jets

 Seminal contributions to the establishment of QCD from experimental study at lepton colliders

evolution of lepton colliders

RPL 35, 1609 (1975), SLAC-LBL

angular distributions support

QCD and Jets

 Seminal contributions to the establishment of QCD from experimental study at lepton colliders

evolution of lepton colliders

RPL 43, 830 (1979), MARK-J

first evidence of three-jets and

The Era of LEP

 LEP (highest ~209 GeV) studied multi-jet final states and jet properties over a large range in energy; foundation of precision QCD

- measurement of α_s, asymptotic freedom, non-Abelian gauge structure of QCD
- difference of quark and gluon jet
- string effects, hadronization models, power correction
- multi-jet production, hadronic event shapes
- gluon splitting to heavy quarks, running b quark mass
- two photon physics

evolution of lepton colliders

The Era of LEP

 LEP (highest ~209 GeV) studied multi-jet final states and jet properties over a large range in energy; foundation of precision QCD

PDG 2016

CEPC vs. LEP

 CEPC with a much higher designed luminosity promises various QCD study at the highest precision, especially for high energies

Year	Range of \sqrt{s} [GeV]	$\begin{array}{c} \text{Mean } \sqrt{s} \\ \text{[GeV]} \end{array}$	\mathcal{L} [pb ⁻¹]	Selected events	
1996, 2000	91.0-91.5	91.3	14.7	395695	
1995, 1997	129.9 - 130.2	130.1	5.31	318	
1995, 1997	136.0 - 136.3	136.1	5.95	312	
1996	161.2 - 161.6	161.3	10.06	281	
1996	170.2 - 172.5	172.1	10.38	218	
1997	180.8 - 184.2	182.7	57.72	1077	
1998	188.3—189.1	188.6	185.2	3086	
1999	191.4 - 192.1	191.6	29.53	514	
1999	195.4 - 196.1	195.5	76.67	1137	
1999, 2000	199.1 - 200.2	199.5	79.27	1090	
1999, 2000	201.3 - 202.1	201.6	37.75	519	
2000	202.5 - 205.5	204.9	82.01	1130	
2000	205.5 - 208.9	206.6	138.8	1717	

sample in OPAL hadronic analysis, 1101.1407

CEPC with a designed energy of 250 GeV and full luminosity of 5000 fb⁻¹

negligible statistical errors, reducing systematics; smaller power/hadronization corrections; allows precision study on high jet multiplicities

		I Contraction of the second		
\mathbf{F}^{γ} in $\alpha \alpha$	$3.5\%_{ m th}\oplus 3\%_{ m exp}pprox 4.5\%$	$1\%_{\rm th} \oplus 2\%_{\rm exp} \approx 2\%$ (~2 yrs), <1% (FCC-ee)		
$r_2 m \gamma \gamma$	(NLO only)	(NNLO. More precise new F_2^{γ} data)		
e^+e^- evt shapes	$(1.5-4)\%_{ m th} \oplus 1\%_{ m exp} pprox (1.5-4)\%$	$1\%_{\rm th} \oplus 1\%_{\rm exp} \approx 1.5\%$ (+B-factories), < 1% (FCC-ee)		
	$(NNLO+N^{(3)}LL, npQCD significant)$	(NNLO+N ³ LL. Improved npQCD via \sqrt{s} -dep. New data)		
jets in e^+e^-	$(2-5)\%_{\rm th} \oplus 1\%_{\rm exp} \approx (2-5)\%$	$1\%_{\rm th} \oplus 1\%_{\rm exp} \approx 1.5\%$ (few yrs), $< 1\%$ (FCC-ee)		
	(NNLO+NLL, npQCD moderate)	(NNLO+NNLL. Improved npQCD. New high- \sqrt{s} data)		
W decays	$0.7\%_{ m th} \oplus 37\%_{ m exp} pprox 37\%$	$(0.7-0.1)\%_{\rm th} \oplus (10-0.1)\%_{\rm exp} \approx (10-0.15)\%$ (LHC,FCC-ee)		
	$(N^{3}LO, npQCD small.$ Low-stats data)	$(N^4LO, \sim 10 \text{ yrs. High-stats/precise W data})$		
Z decays	$0.7\%_{ m th}\oplus 2.4\%_{ m exp}pprox 2.5\%$	$0.1\%_{\rm th} \oplus (0.5-0.1)\%_{\rm exp} \approx (0.5-0.15)\%$ (ILC,FCC-ee)		
	$(N^{3}LO, npQCD small)$	$(\mathrm{N}^4\mathrm{LO},{\sim}10$ yrs. High-stats/precise Z data)		

8 FCC-ee projection on as, 1512.05194

CEPC vs. LEP

 CEPC has the speciality of Higgs boson production with hadronic decays; producing the unique di-gluon final states and unbiased gluon jet

scale [GeV]

unique for study unbiased gluon jet at high energy using Higgs boson to calibrate gluon jet and study event shapes Measurement on light-quark (u/d/s) Yukawa couplings are important but experimentally challenging

SM Higgs boson, y_s/y_b~0.1/5; u or d quarks negligible

Model $\kappa_{s(d)}/\kappa_b$ κ_b SM1 NFC $V_{hd} v_W / v_d$ 1 $-\sin \alpha / \cos \beta$ MSSM 1 GL $\simeq 3$ $\simeq 5/3(7/3)$ GL2 $-\sin\alpha/\cos\beta$ $\simeq 3(5)$

F. Bishara et al., 1504.04022

interesting to test NP scenario where light-quark Yukawa couplings are enhanced

◆ Rare decays of the Higgs boson (BR~10⁻⁶) measured at the LHC could be sensitive to the strange-quark Yukawa coupling

direct contribution

indirect contribution

conventionally y_q are shown in unit of SM y_b

$\sqrt{s} [{ m TeV}]$	$\int \mathcal{L} dt [\mathrm{fb}^{-1}]$	# of events (SM)	$\bar{\kappa}_s > (<)$	$\bar{\kappa}_s^{\text{stat.}} > (<)$
14	3000	770	0.39(-0.97)	0.27(-0.81)
33	3000	1380	0.36(-0.94)	0.22(-0.75)
100	3000	5920	0.34(-0.90)	0.13(-0.63)

A. L. Kagan et al., 1406.1722

large theoretical systematics, e.g., from non-perturbative inputs; exp. unc. and BKs are large, 1505.06689 gives a number of ~20 instead

 Kinematic distributions of the Higgs boson measured at the LHC could be sensitive to the u/d quark Yukawa couplings

gluon luminosity is much higher than qqbar at the LHC, sensitivity will be largely limited by, e.g., theoretical uncertainties in gluon fusion

 CEPC is designed to measure the Higgs boson couplings with high precision which also applies to the light-quark Yukawa couplings

 0.8_{Γ}

◆ A better way from theoretical point of view, utilizing global hadronic event shape observables, e.g., thrust distribution

$$T = \max_{\vec{n}} \left(\frac{\sum_{i} |p_i \cdot \vec{n}|}{\sum_{i} |p_i|} \right)$$

0.5<T<1, described by resummed prediction matched with fixed-order, plus additional non-perturbative corrections

sensitive to α_s

OPAL, hep-ph/0503051

◆ A better way from theoretical point of view, utilizing global hadronic event shape observables, e.g., thrust distribution

$$T = \max_{\vec{n}} \left(\frac{\sum_{i} |p_{i} \cdot \vec{n}|}{\sum_{i} |p_{i}|} \right)$$

0.5<T<1, described by resummed prediction matched with fixed-order, plus additional non-perturbative corrections

sensitive to the average color charge

OPAL, hep-ph/0503051

 Events of Higgs boson hadronic decay can be selected based on the recoil mass and be fully reconstructed

total event number assuming 250 GeV, 5 ab⁻¹ and Z to electron and muon

$Z(l^+l^-)H(X)$	gg	$b\overline{b}$	$c\overline{c}$	$WW^*(4h)$	$ZZ^*(4h)$	$q \overline{q}$
BR [%]	8.6	57.7	2.9	9.5	1.3	~ 0.02
Nevent	6140	41170	2070	6780	930	14

16

$$m_{\rm recoil}^2 = s - 2E_{f\bar{f}}\sqrt{s} + m_{f\bar{f}}^2$$

full kinematic informations allowing measurement of T in Higgs boson rest frame

Thrust distribution

◆ Di-gluon and di-quark initiated distributions show approximately a Casimir scaling on the peak position, C_A/C_F=9/4

- N3LL +NNLO prediction available for SM Z->qq, T.
 Becher et al.; T. Gehrmann et al.
- N3LL+NNLO prediction in progress for H->gg, bb, qq
- effects of heavy-quark mass are small
- theoretical uncertainties include variation on ren. and mat. scales, and on hadronization effects

Sensitivity on light-quark Yukawa

 A projection on sensitivity on light-quark-Yukawa couplings is obtained using pseudo-data

Jun Gao, 1608.01746

$$\frac{dN}{dO} = N_S(rf_{q\bar{q}}(O) + (1-r)f_{gg}(O)) + N_{B,1}f'_{q\bar{q}}(O) + N_{B,2}f_{WW}(O)$$

- r, defined as BR(qq)/BR(jj), j=g,q
- ▶ N_S, total signal events of ZH(jj), assuming an efficiency of 50%
- N_{B1}, BKs from ZZ(qq) and ZH(bb,cc), ~30% of N_S(SM) using recoil mass selection and heavy flavor tagging
- N_{B2}, BKs from ZH(WW*,ZZ*), ~60% of N_S(SM), (effects are small since far away from signal region)
- f(qq),f'(qq),f(WW),f(gg), normalized shapes, can be obtained from theoretical calculation(simulation) or via data in a controlled region

Sensitivity on light-quark Yukawa

 A projection on sensitivity on light-quark-Yukawa couplings is obtained using pseudo-data

$$\frac{dN}{dO} = N_S(rf_{q\bar{q}}(O) + (1-r)f_{gg}(O)) + N_{B,1}f'_{q\bar{q}}(O) + N_{B,2}f_{WW}(O)$$

- N_S can be measured independently to ~3% via hadronic Z decays (CEPC TDR)
- Systematics on N_{B1},N_{B2} estimated to be 4%
- Also including three systematics on theoretical predictions of f(gg)
- Expected exclusion limit on r are obtainted via psedu-data and by using profiled log-likelihood ratio with the CL_S method

Jun Gao, 1608.01746

expected exclusion limit

Sensitivity on light-quark Yukawa

 A projection Boin / sensibility on light-quark-Yukawa couplings is obtained using pseudo-data

expected exclusion limit

an exclusion limit on r of 0.05, corresponds to a decay BR(qq) of 0.4% to any of u/d/s, a Yukawa coupling of 8% of SM y_b, or 5 times of SM y_s

comparison with LHC

best projected LHC limit from exotic decay on s quark is $\sim 30\%$ (optimistic) of SM y_b, from kinematic distribution on u/d is $\sim 50\%$

Jun Gao, 1608.01746

Summary

CEPC offers a great opportunity on precision study of QCD

 The higher energy and luminosity allow further refined study on QCD topics studied at LEP

 The unique Higgs boson production allows detailed study on QCD gluon jet, fragmentation and event shapes

 On the other way around, QCD study can be important for measurements on Higgs couplings, especially providing best sensitivity on light-quark Yukawa couplings