
CDR Discussion How much time we have

Manqi Ruan

Tasks ahead

- Detector Geometry Design
 - ILD-like:
 - Key parameter selections
 - Key performance
 - Key questions (Potentially No-Go)
 - Significant Beyond ILD: any good idea?
 - Systematic errors...
- Software Chain: A continuous effort of 3-5 years.
- Physics Potential
 - Higgs Mostly done. Benchmarks need be iterated at new geometry
 - EW, Z ??
 - Flavor, ??
 - ... theoretical errors Progressing

CDR Content

- Physics & Detector
- Physics Side
 - Benchmark detector geometry & Benchmark performances
 - Validation/Specification of these geometries
 - Higgs Physics
 - Accuracy at CEPC_v1

Mostly done

- Extrapolation to New Benchmark Geometry?
- EW Performance
 - With at least 1 channel covered by full simulation
- Detector Side: Try to help in answering potentially No-Go questions for subdetector design

Physics Benchmarks

Benchmarks	Main observables	Key performances	Status	
llH, H->X	Higgs recoil spectrum	Lepton Id efficiency, Tracker intrinsic momentum resolution	Well understood	
H+X, H->di photon	Event reconstruction efficiency, Higgs invariant mass peak width	Tracker Material, Intrinsic ECAL energy Resolution		
ZH->4 jets, Br(H->bb, cc, gg)		Jet clustering, PFA: Jet Energy Resolution, Jet Flavor Tagging	Studied at CEPC	
vvH, H->di tau	Efficiency of Tau reconstruction with different tau decay mode	PFA separation, Impact parameter resolution	conceptual Detector (CEPC_v1)	
qqH, H->invisible	Higgs recoil spectrum	PFA: Jet Energy Resolution		
vvH, H->WW->lvqq	Event Reconstruction Efficiency di-jet mass distribution	PFA, Simultaneous reconstruction of Lepton, Jets and Missing Energy	Studied at different Calorimeter Granularity	
H+X, H->di muon	Event reconstruction efficiency, Higgs invariant mass peak width	Lepton Id efficiency, Tracker intrinsic momentum resolution	Studied at CEPC conceptual	
vvH, H->2 jets	Br(H->bb, cc, gg)	Jet Energy Resolution & Flavor Tagging	Detector	
WW->lvqq	W mass	Jet Energy resolution & Systematic controls	Full simulation analysis not accomplished yet	

Each analysis will be repeated at different geometry, with full Higgs signal sample (and potentially WW sample)

06/11/2016

Fix Basic Geometry

Benchmark detector geometry

_	ECAL Layout	Done
_	ECAL Layout	Done

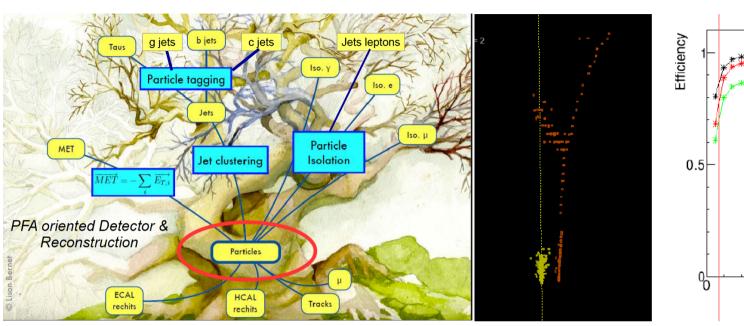
_	HCAL La	yout ~	2 mont	ihs
---	---------	--------	--------	-----

Tracker Size

•	for tracking perf	ormance	Done
---	-------------------	---------	------

•	PFA Performance	~ 2.5 months
	I I / (I OI IOI I I I I I I O	

_	B-Field Strength	~ 1 months
	Diriola Circinatii	


- Integrated with a reliable MDI ???

- ~ half a year is needed to fix the basic geometry of the detector, with a full support from the analysis team.
- Very unfortunate, many key players will leave us soon

Summary

- Core Content Could be secured
 - Para. Opti. w.r.t. ILD
 - Key performance & answer to key questions
 - Need to have enough skillful manpower in analysis team (even!)
- My personal P.o.V: not very likely that we will converge at something significantly beyond ILD (esp. In 2 years...)
 - But would be good to give arguments, either opposite. Or support ILD
- Long term activities, including software development, should be put in operation now.

Detector performance

Acceptance	$ \cos(\theta) < 0.995$ (from the inner radius of the outmost tracking disk)	
Tracking Efficiency	For isolated charged particle with energy > 1GeV: ~100%	
Photon Reconstruction Efficiency	For isolated photon with energy > 0.5 GeV: ~100%	
Tracker resolution	$\delta(1/P_T) = 2*10^{-5} (\text{GeV}^{-1})$	
ECAL intrinsic resolution	$\delta E/E = 16\%/\sqrt{E/GeV} \oplus 0.5\%$	
HCAL intrinsic resolution	$\delta E/E = 60\%/\sqrt{E/GeV} \oplus 1\%$	
Jet energy resolution	$\delta E/E = 4\%$	
Typical Distance for shower separation	< 3 cm	
Lepton identification	For charged particle with Energy >2GeV: Lepton identification	
-	efficiency > 99.5%, P(hadron→muon)~P(hadron→electron): 1%	
b-tagging	At Z pole samples & eff(b \rightarrow b)) = 80%, P(uds \rightarrow b) < 1%, P(c \rightarrow b) \sim 10%	
c-tagging	At Z pole samples & eff($c\rightarrow c$) = 60%, P(uds $\rightarrow c$) = 7%, P(b $\rightarrow c$) = 12%	

Performance at full reconstruction

Benchmark separation distance < 3 cm (Testing on 10 GeV Pion + 5 GeV Photon Sample)

10/11/2016