Search for $\Lambda\Lambda$ and Ξ^-p Exotic Dibaryon States in the ${}^{12}C(K^-,K^+)$ reaction

J-PARC E42

Jung Keun Ahn (Korea University) (The 7th Asia-Pacific Conference on Few-Body Problems in Physics (APFB 2017), Guilin, August 26-30, 2017)

INTRODUCTION

Multiquark Hadrons

- The existence of multiquark hadrons is now firmly established in the meson sector.
- Belle has shown proof for several meson+meson ("4-quark") tetraquarks.
- LHCb has shown proof for meson+baryon ("5-quark") pentaquarks.
- The existence of baryon+baryon ("6-quark") dibaryons is predicted by theory.

Perhaps a Stable Dihyperon

VOLUME 38, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1977

Perhaps a Stable Dihyperon*

R. L. Jaffe†

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, I Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^P = 0^+$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H*) with $J^P = 1^+$ at 2335 MeV should appear as a bump in $\Lambda\Lambda$ invariant-mass plots. Production and decay systematics of the H are discussed.

○ MIT bag model predicts di-hyperon state (*H*) with

 $I = 0, \quad S = -2, \quad J^p = 0^+$

and a mass of $m_H = 2150$ MeV (by 80 MeV relative to $2m_\Lambda$). \bigcirc H^* with $J^p = 1^+$ appears as a 2335-MeV bump in $\Lambda\Lambda$ mass distribution.

H-Dibaryon (Hexaquark State)

A stable SU(3)_f singlet hexaquark state consisting of *uuddss* quarks due to QCD color magnetic force : H-Dibaryon.

H-Dibaryon from Lattice QCD in 2011¹

 Recent LQCD calculations seem to point to a weekly bound *H* or resonant state although we have got to wait for definite results with physical quark masses.

¹HAL Collab., PRL 106 (2011)/ NPLQCD Collab. PRL 106 (2011)/ Shanahan, Thomas, Young, PRL 107 (2011)

H-Dibaryon from Lattice QCD²

○ Lattice QCD calculations predict the *H* appears closer to $N\Xi$ mass threshold with physical quark masses, yielding a bound $N\Xi$ system at $m_{\pi} = 410$ MeV.

2S. Aoki (HAL Collab.), Nuclear Physics from Lattice QCD, March 21-May

Recent Lattice QCD Calculation Result

• Preliminary results with L = 8 fm and $m_{\pi} = 145$ MeV. • $\Lambda\Lambda$ and $N\Xi (I = 0)$ ¹S₀ phase shifts ³

○ Deuteron-like *N* ≥ bound system from ESC model.⁴

³K. Sasaki for the HAL Collab., Reimei 2016, Inha (2016).

⁴Y. Yamamoto, NSMAT2016

○ The flavor-singlet two-baryon state:

$$|H\rangle\approx\frac{\mathscr{A}}{\sqrt{8}}\Big(|\Lambda\Lambda\rangle+\sqrt{4}|N\Xi\rangle-\sqrt{3}|\Sigma\Sigma\rangle\Big),$$

where \mathcal{A} is the antisymmetrization operator for the six quarks.

 \bigcirc *H* couples most strongly to *N* Ξ and that a *N* Ξ bound state will appear in the $\Lambda\Lambda$ spectrum as a sharp resonance state.

⁵M. Oka, *QCD analysis of the H-dibaryon* arXiv:hep9510354v1 (1995).

EXPERIMENTAL REVIEW

40 Year History since the H-Dibaryon Prediction

1977	Deeply-bound di-hyperon predicted by R. Jaffe	
1980-2000	No evidence for the deeply-bound <i>H</i> from KEK, BNL,	
•	and CERN experimental efforts by more than 80 MeV	
2001	Mass constraint from observation of $^{6}_{\Lambda\Lambda}$ He (E373)	
1998,2007	Enhanced $\Lambda\Lambda$ production near threshold was	
•	reported from E224 and E522 at KEK-PS.	
2013-2015	No evidence for $H \to \Lambda p \pi^-$ and $H \to \Lambda \Lambda$	
•	in high-energy e^+e^- , pp and AA experiments	
2011	LQCD calculations predict the H-dibaryon	
•	to appear near (just above) threshold	
Present	J-PARC E42 under preparation	

H-Dibaryon Search at Belle ⁶

- The Belle searched for the H-dibaryon in Υ decays $(Br(\Upsilon \rightarrow HX)/Br(\Upsilon \rightarrow \overline{d}X) < 10^{-2}).$
- Six-quarks should be produced and correlated to form the H-dibaryon from nothing in the initial state.

$\Lambda\Lambda$: Recent Results from STAR 7

 Only small fraction of ΛΛ or ΞN pairs will be produced close enough in space and with their relative momenta small enough to interact via *H*-formation.

⁷STAR Collab., Phys. Rev. Lett. 114, 022301 (2015); A. Ohnishi, HHI (2012).

Double- Λ Hypernuclei and $\Lambda\Lambda$ Production

ΛΛ pair decays strongly to the *H* in a nucleus if *H* is lighter than ΛΛ in a nucleus.
コ さいかいの

KOREA UNIVERSITY

KEK-E224 measurement for ${}^{12}C(K^-, K^+)\Lambda\Lambda X$ (7.6 μ b/sr and 3 μ b/sr for the H)

H-Dibaryon as a $\Lambda\Lambda$ Resonance?

 Indications to the enhanced ΛΛ production from KEK-PS E224 and E522 beyond prediction from INC calculations.⁸
⁸Y. Nara *et al.*, Nucl. Phys. A614 (1997) 433.

- **1**. *H* search in (K^-, K^+) reactions from J-PARC E42.
- 2. Long-lived *H* search in the $H \rightarrow \Lambda n \pi^0$ decay at J-PARC E14 (KOTO).
- 3. *H* search in the $\gamma d \rightarrow K^+ K^0 H$ reaction at SPring-8 $(E_{\gamma}^{\text{th}} = 1.83 \text{ GeV for } m_H = 2m_{\Lambda}).$
- 4. *H* search in QCD vacuum and gluons from Upsilon decays at Belle-II.

H-Dibaryon Search from Photoproduction ⁹

J-PARC E42

H-Dibaryon Search at J-PARC : E42

The existence of the H-dibaryon still awaits definitive experimental confirmation or exclusion.

- \bigcirc Weakly-bound : $H \rightarrow \Lambda p \pi^-$
- \bigcirc Virtual state : $\Lambda\Lambda$ threshold effect
- $\odot\,$ Resonance : Breit-Wigner peak in the $\Lambda\Lambda$ mass spectrum

J-PARC-E42 EXPERIMENT

- 1. in $(\Sigma^{-}p)$, $\Lambda p \pi^{-}$, $\Lambda \Lambda$ and $\Xi^{-}p$ channels
- **2**. by tagging the S = -2 system production
- 3. via (K^-, K^+) reactions at 1.7 GeV/*c* with a diamond target.
- 4. Hyperon Spectrometer : 1 MeV $\Lambda\Lambda$ mass resolution!

H Production from (K^-, K^+) Reactions

$$K^{-} + (pp)^{1}S_{0} \rightarrow K^{+} + (\Xi^{-}p)^{1}S_{0} \rightarrow K^{+} + H(J^{\pi} = 0^{+})$$

○ Possible *H* production processes on a diproton pair via the (K^-, K^+) reaction¹⁰ ¹¹ :

¹⁰N. Aizawa and M. Hirata, Z. Phys. A 343, 103 (1992)
¹¹A.T.M. Aerts and C.B. Dover, Phys. Rev. D28, 450 (1983)

The J-PARC E42 Collaboration

J.K. Ahn (*spokesperson*), W.J. Choi, W.S. Jung, S.H. Kim, M.H. Kim, Y.J. Kim, J.W. Lee, Y. Han, S. Hasegawa, R. Honda, Y. Ichikawa, K. Imai (*co-spokesperson*), H. Sako, S. Sato, H. Sugimura, K. Tanida, M. Ieiri, R. Kiuchi, M. Naruki, K. Ozawa, H. Takahashi, T. Takahashi, S.H. Hwang, S.H. Kim, H.S. Lee, S.Y. Ryu, K. Shirotori, H. Ekawa, H. Fujioka, M. Niiyama, T.J. Moon, J.Y. Lee, S. Kinbara, K. Nakazawa, M. Sumihama, J. Yoshida, B. Bassalleck, K. Hicks, C. Rangacharyulu, L. Guo, K. Miwa, S. Hayakawa, Y. Nakada

- ¹ Korea University / Korea Research Institute of Standards and Science / Institute for Basic Science / Seoul National University, Korea
- ² Japan Atomic Energy Agency (JAEA) / High Energy Accelerator Research Organization (KEK) / RCNP, Osaka University / Kyoto University / Gifu University / Tohoku University / Osaka University, Japan
- ³ Ohio University / University of New Mexico / Florida International University, USA
- ⁴ University of Saskatchewan, Canada

Hyperon Spectrometer at K1.8 Beam Line of J-PARC

 The Hyperon spectrometer consists of a time projection chamber (HypTPC) and the superconducting Helmholtz magnet.

Superconducting Dipole Magnet

- Helmholtz-type dipole magnet^a
- \bigcirc *B* field at center : 1.5 T (1.0 T for E42)
- Conduction cooling with two GM refrigerators
- Field uniformity $\frac{B_r/B_y}{E_y} < 1\%$ over the inner volume ($\phi = 500$ mm)

Photo of inner volume ($\phi = 800$ mm)

Photo of the Helmholtz magnet for field measurement

^aKR-tech, Daegu, Korea

Time Projection Chamber

 Octagonal prism field cage and a readout chamber consisting of a gating-grid, a triple GEM layer and a concentric pad plane (5768 pads)

HypTPC Structure

- Four GEM (250 × 250 mm²) sheets per layer
- $\bigcirc \text{ Triple GEM layers (100 } \mu\text{m} \\ (top) + 50 \ \mu\text{m} + 50 \ \mu\text{m})$
- \bigcirc Gain ~ 10⁴
- \bigcirc 10 inner pad rows with 2.1-2.7 \times 9 mm².
- \odot 22 outer pad rows with 2.3-2.4 × 12.5 mm².
- \bigcirc Position resolution < 300 μ m
- $\bigcirc \Delta p/p = 1-3\%$ for π and p.

Inside the HypTPC

 A target holder structure for a diamond target, field strips for keeping uniform electric field.

Yield Estimate

Parameters	Value
K [−] beam	$6 \times 10^5 K^-$ / spill (5.5 s)
Target length	20 mm
Number of nuclei	2.65×10^{23} /cm ²
$d\sigma/d\Omega_L^C(\Lambda\Lambda)$	7.6 µb/sr
$\Delta\Omega(K^+)$	0.16 sr
$Br(\Lambda \rightarrow p \pi^{-})^2$	0.41
<i>K</i> ⁺ Reconstruction	0.5
$\Lambda\Lambda$ Reconstruction	0.4 - 0.6
Yield	0.03 event / spill

 $\odot~1.5 \times 10^4 ~\Lambda\Lambda$ events for 100 shifts at the current beam

power.

$\Lambda\Lambda$ Mass Distribution from KEK-E522

Scintillating Fiber Target : 5 MeV $\Lambda\Lambda$ mass resolution!

INC calculation results based on Ref (Y. Nara et al, NPA 614 (1997) 433)

Simulated $\Lambda\Lambda$ Spectrum for H(2250) ¹²

Simulated $\Lambda\Lambda$ Spectrum for H(2250) assuming $d\sigma/d\Omega = 1.0 \ \mu b/sr$.

¹²Simulation on two-step processes is based on INC calculation by Y. Nara, A. Ohnishi, T. Harada and A. Engel, Nucl. Phys. A614 (1997) 433.

Simulated $\Xi^- p$ Spectrum for H(2265) ¹³

Simulated $\Xi^- p$ Spectrum for H(2265) assuming $d\sigma/d\Omega = 0.3 \ \mu b/sr$.

¹³Blue spectrum shows a phase-space distribution without $\Xi^- p$ final-state

Proposed Timeline for E42

- 1. *H*-dibaryon search in $\Lambda p \pi^-$, $\Lambda \Lambda$ and $\Xi^- p$ channels.
- 2. $\Lambda\Lambda$ production cross sections from ${}^{12}C(K^-, K^+)$ reaction (Lineshape analysis for $\Lambda\Lambda \Xi^- p$ interaction).
- 3. Cascade weak decays from Ξ-hypernuclei (Charged pions and protons can be reconstructed).
- 4. $\Xi^- p$ or Ξ^{-12} C scattering from a laminated target.
- \odot E45 looks for missing baryon resonances in $\pi\pi N$ channels.
- Study of Ξ^* resonances is viable in the $K^-p \rightarrow \Lambda K^-K^+$ reaction.

S = -2 Dibaryons in Particle Data Book (1982)

S=-2 DIBARYON Status: * BARYON NUMBER 2, STRANGENESS -2 STATES 108 IN THIS SECTION WE USE THE FOLLOWING ABBREVIATIONS FOR MEASURED QUANTITIES ---LLIM LAMBDA-LAMBDA INVARIANT MASS LAMBDA-LAMBDA-PI INVARIANT MASS LIPI XPIM XI-P INVARIANT MASS 108 B=2, S=-2 --- MASS (MEV) (2367.0) (4.0)BEILLIERE 72 LLIM Q=0 GAUSSIAN FIT (2365.3)(9.6) SHAHBAZIA 73 LLIM Q=0 B M 80 XPIM Q=0 C (2480.0) GOYAL M SHAHBAZIA 82 LPPI Q=1 (3568.3)M K- D TO XI- P KO. M P TO LAMBDA LAMBDA X AND PI- P TO LAMBDA LAMBDA X FOR P IN C12. × C GOYAL 80 ALSO SEES A SHOULDER AT 2360 MEV. 108 B=2, S=0 -- WIDTH (MEV) (15.0)(4.0) BEILLIERE 72 LLIM Q=0 GAUSSIAN FIT (47.0) (15.7) SHAHBAZIA 73 LLIM Q=0 ***** **** ********* ****** 2017/08/28 Slide 32 KOREA UNIVERSITY

 We welcome you to join us on the journey for hunting the H-dibaryon (E42) and also for studying baryon resonances (E45) with the HypTPC at J-PARC.

Schematic view of the E42 setup

Spin Analysis

 Spin correlation measurement from E224: $\frac{dN}{d\cos\theta^*}\Big|_{S=0} = 1 - \alpha_{\Lambda}^2 \cdot \cos\theta^*$ $\frac{dN}{d\cos\theta^*}\Big|_{S=1} = 1 + \frac{1}{3}\alpha_{\Lambda}^2 \cdot \cos\theta^*,$ where θ^* is the angle between the two decay protons in the $\Lambda\Lambda$ rest frame.

