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Introduction

Universal scaling of scattering observables for
mass-imbalanced three-body systems

Main motivations are the present experimental possibilities:

(i) in nuclear physics, by considering halo-nuclei systems;
(ii) in cold-atom laboratories, when considering mixed atomic species.

In both the cases, our interest is to verify universal properties of
scattering observables for three-body systems near the unitary limit.

Examples we are considering:

• Halo-nuclei: n ! (n18C)

• Ultracold atoms: The ↵ ! (↵�) system, when m↵ � m�
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Outline:

A) Weakly-bound nuclear systems: halo-nuclei

The neutron�19C elastic scattering near critical conditions for an
excited 20C state

Motivation based on related works in scattering with three-body
systems and the Efimov states
Formalism for the scattering of a nucleon (n) by a dimer formed by
n�core subsystem.
Scattering observables: k cot �0 and cross-section �.
Results for k cot �0, considering zero-, low- and high-range
two-body interactions.
Pole-positions of k cot �0, given as a function of Enc .
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B) Ultracold atoms: ↵ ! (↵�) system, for m↵ � m�

Formalism follows the case n ! (nc), except that the identical
particles are not interacting.
It is shown that the 3-body Efimov scaling factor can be well
identified in ↵ ! ↵� scattering observables.
As the scaling behavior is better verified for large
imbalance-mass systems, the results can be relevant for the
going-on experimental observations of Efimov physics in
cold-atom laboratories.
In case of m↵ = 100 m� , the ratio between consecutive levels of
the bound-state energy spectrum is given by exp (2⇡/s0) ⇠ 4.7.
Going to scattering region, the discrete Efimov scaling factor can
also be well identified in scattering observables of one atomic
species ↵ when colliding with a two-body ↵� bound-state.
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Motivations from ultracold atom laboratories
Heidelberg group is studying the extreme mass-imbalance
mixtures composed by 133Cs and 6Li atomic species [J. Ulmanis
et al, PRL 117 (2016) 153201].
Ultracold degenerate mixtures of alkali-metal-rare-earth
molecules, 174,173Yb�6Li have also been considered by H. Hara
et al [PRL 106 (2011) 205304] and Hansen et al [PRA 84 (2011)
011606(R)].
Therefore, we understand that more favorable conditions are
accessible to probe the rich Efimov physics in cold-atom
laboratories.
Note that, for the above mentioned examples, we have
mass-ratios as m�/m↵ =0.034 for LiYb and 0.045 for LiCs
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Universality in weakly-bound 3-body systems: Efimov physics

Efimov Effect: First predicted in 1970 by Vitaly Efimov (then at the Ioffe
Physico-Technical Institute, St. Petersburg, Russia), when solving the quantum
mechanics three-boson equation.

If two bosons interact in such a way that a two-body bound state is exactly on the verge
of being formed, then in a three-boson system one should observe an infinite number
of bound states. This phenomenon was shown that does not occur for less than three
dimensions.

If one would be able to change the interaction strength, by making it either weaker or
stronger, the number of three-body bound states would become finite.

The phenomenon is part of some general universal behavior of quantum few-body
systems.

Why the actual interest?
Atomic physicists learned how to manipulate the interaction strength between atoms.
Following that, several experimental groups obtain strong indications of three-body
states as predicted by Efimov.
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Search for Efimov states

25 

core 

n n 

core-neutron-neutron halo nuclei 
 
 
 

11Li   14Be   20C 
 
Binding energy ~ MeV or < MeV 
 
Rnn(Exp) ~ 6 - 8 fm  (11Li)  
 
F. M. Marqués et al. Phys. Rev. C 64, 061301 (2001) 
 
M. Petrascu et al. Nucl. Phys. A 738, 503 (2004)  

Halo Nuclei as a three-Body model 

Properties of halo nuclei
The radius of this kind of nuclei is much more than the expected value: R = r0A1/3

Weak interaction between the core and the halo-nucleons, such that we can consider a halo nuclei as three non-identical particle
(n � n�core) system, and neglect the structure of the core.

This three-body system has large two-body scattering lengths in comparison of the range of the interactions, suggesting the
possibility of excited three-body Efimov states.
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                     Efimov states in Halo Nuclei 
 
 
Fedorov and Jensen, Phys. Rev. Lett. 25 (1993) 4103 
 
Fedorov, Jensen, and Riisager, Phys. Rev. Lett. 73 (1994) 2817 
  
Dasgupta, Mazumdar, and Bhasin, Phys. Rev. C 50 (1994) R550 
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K2 = (E2)1/2  (where 2 refers to n-n or n-c)  
and BNis the N-th 3body bound state.   
Here, it is shown the boundary of the 
region where the binding energy of the (N
+1)th Efimov state is zero for different 
core masses (A).  
Negative values for the two-body 
observables correspond to virtual states. 
It is also shown three experimental data, 
corresponding to the halo nuclei 20C, 18C, 
12Be [Audi and Wapstra, NPA595(1995)409].  
The squares, connected with dashed 
lines, are obtained from Fig. 2 of Fedorov 
et al. PRL73(1994)2817.  

(*) Work done as part of the PhD thesis of Amorim, from 1995 and 1996, submitted for publ. in 1996. 

(*) 

All-bound 

Borromean 

Samba 

Tango 

nn virtual  nn bound See also  Canham & Hammer �Universal properties and 
 structure of halo nuclei�, Eur. Phys. J. A 37, 367 (2008) 

Threshold conditions for an excited N+1 Efimov state 
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 z=sqrt[1/515]=0.044   ! o 

Threshold conditions and Scaling function 
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Exploring the Efimov physics: From bound to scattering

Consider the general case of three-boson system with non-identical
masses such that m↵ � m� , when the two-body scattering length is
close to infinite.

Two levels of the 3-body spectrum are related by a scaling factor:
exp (2⇡/s0), where s0 is a constant that varies according to the
mass-ratio [See Braaten and Hammer, Phys. Rep. 428 (2006) 259].

When all the sub-systems are interacting, the maximum energy-ratio at
unitary limit occurs for m↵ = m� , predicted to be ⇠ 515.

When m↵ = 100m� , exp (2⇡/s0) ⇠ 4.7, with particular interest for
experiments with cold atoms.
(We have also defined mH ⌘ m↵ and mL ⌘ m� , for atomic systems.)
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Equal-mass case: Pole in kcot� for the n � d system

W.T.H. van Oers and J.D. Seagrave, Phys. Lett. B 24 (1967) 562.
By analyzing data for n � d scattering, they pointed out a pole in kcot�.

A.S. Reiner, Phys. Lett. B 28 (1969) 387.
The anomalous effective range expansion of the doublet n � d elastic scattering is due to a pole just below the threshold.

J.S. Whiting and M.G. Fuda, Phys. Rev. C 14 (1976) 18.
The pole position and residue was obtained from dispersion relation and exact solution of 3B equations.

B.A. Girard and M.G. Fuda, Phys. Rev. C 19 (1979) 579.
The existence of the triton virtual state was found on the basis of the effective range expansion.

S.K. Adhikari, A.C. Fonseca, and LT, Phys. Rev. C 26 (1982) 77; S.K. Adhikari and LT, Phys.
Rev. C 26 (1982) 83; S.K. Adhikari, LT and A.C. Fonseca, Phys. Rev. C 27 (1983) 1826.
Studies on Efimov effect in the three-nucleon system. It was shown that the triton virtual state appears from an excited Efimov
state moving to the non-physical energy sheet through the elastic cut.
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Unbalanced-mass case: Pole in kcot� for the halo-nuclei system
M.T. Yamashita, T. Frederico and LT, Phys. Rev. Lett. 99 (2007) 269201; Phys. Lett. B 660
(2008) 339.
Shows the migration of the excited Efimov state of n � n �18 C to the virtual state, as well as performed calculations on the
n �19 C scattering within zero-range interaction.

M.A. Shalchi, M.T. Yamashita, M.R. Hadizadeh, T. Frederico, LT, Phys. Lett. B 764 (2017)
196. Neutron�19C scattering: Emergence of universal properties in a finite-range potential; Phys. Lett. B 771 (2017)
635 (Erratum).
A. Deltuva, Phys. Lett. B 772 (2017) 657 Neutron�19C scattering: Towards including realistic interactions.
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Formalism

Formalism
The amplitude of on–shell scattering of n from nc target;

hn(q,E) = V (q, k ,E) +
2
⇡

Z
dq0 q02 V (q, q0,E)hn(q0,E)

q02 � k2 � i✏

q: the momentum of the spectator particle (n) with respect to the
CM of the (n � c) subsystem.
the on-energy-shell:
k ⌘ |~ki | = |~kf | =

p
[2(A + 1)m/(A + 2)] (E � Enc)

where

V(q, q0,E) =
⇡

2
⌧̄nc(q)

⇥

K2 (q, q0,E) +

Z
dk k2 K1 (q, k ,E)⌧nn(k)K1 (q0, k ,E)

�
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Formalism

For both n � n and n � c two-body interactions, we use one–term
separable Yamaguchi-type potentials:

V (p, p0) = �

✓
1

p2 + �2

◆✓
1

p02 + �2

◆
,

where

� =
�2⇡µ

�(� ± )
,

and the range of the interaction

r0 =
1
�
+

2�
(� ± )2 ,
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Formalism

⌧̄nc and ⌧nn (reflecting 2B t–matrices):

⌧̄nc(q) =
��nc(�nc + nc)2(�nc + 3nc)2(nc + 3nc)(A + 1)2

µnc⇡(2�nc + 3nc + nc)A(A + 2)

⌧nn(q) =
2�nn

µnn⇡

(�nn + nn)2(�nn + 3nn)2

(�2�nn � 3nn + nn)(nn + 3nn)
,

where:

nn =
p

�mEnn

nc =

r
� 2mA

A + 1
Enc

3nn =

r
�m(E � (A + 2)q2

4Am
)

3nc =

s

� 2mA
A + 1

(E � (A + 2)q2

2(A + 1)m
).
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Formalism

K1 and K2 functions:

K1(q, q0,E) =

Z
dx

1
E � q2

m + q02(A+1)
2Am + qq0x

m

⇥
✓

q2 +
q02

4
+ qq0x + �2

nn

◆�1 ✓
q02 +

q2A2

(A + 1)2 +
2qq0Ax
(A + 1)

+ �2
nc

◆�1

K2(q, q0,E) =

Z
dx

1
E � q2(A+1)

2Am � q02(A+1)
2Am + qq0x

Am

⇥
✓

q02 +
q2

(A + 1)2 +
2qq0x
(A + 1)

+ �2
nc

◆�1 ✓
q2 +

q02

(A + 1)2 +
2qq0x
(A + 1)

+ �2
nc

◆�1
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Formalism

Handling the singularities (in case of zero-range interactions) by a
subtraction renormalization approach:

�n(q, k ;E) = V(q, k ;E)

+
2
⇡

Z 1

0
dp


p2V(q, p;E)� k2V(q, k ;E)

�
�n(p, k ;E)

p2 � k2 ,

hn(q;E) =
�n(q, k ;E)

1 � 2
⇡

k2
Z 1

0
dp

�n(p, k ;E)

p2 � k2 � i✏

.
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Formalism

On–shell scattering amplitude:

hn(k ;E) = [k cot �0 � ik ]�1,

where

k cot �0 =
1

�n(k , k ;E)


1 � 2

⇡
k2

Z 1

0
dp

�n(p, k ;E)� �n(k , k ;E)

p2 � k2

�
.

Scattering differential cross section:

d�
d⌦

= |hn(k ;E)|2
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Formalism

Calculation of bound and virtual-states:

hnc(q) = (q2 � k2
i )�n(q) , hnn(q) = �c(q)

We have:

hnc(q) = ⌧̄nc(q)
Z

dq0 q02
✓

k2 (q, q0,E)
hnc(q0)

q02 � k2
i + i✏

+ k1 (q, q0,E)hnn(q0)

◆

hnn(q) = ⌧nn(q)
Z

dq0 q02 k1 (q0, q,E)
hnc(q0)

q02 � k2
i + i✏

,

By going to the second sheet of the complex energy:

hnc(q) = ⌧̄nc(q)[⇡kv k2 (q,�ikv ,E)hnc(�ikv )

+

Z
dq0 q02

✓
k2 (q, q0,E)

hnc(q0)

q02 + k2
v
+ k1 (q, q0,E)hnn(q0)

◆
]

hnn(q) = ⌧nn(q)

⇡kv k1 (�ikv , q,E)hnc(�ikv ) +

Z
dq0 q02 k1 (q0, q,E)

hnc(q0)

q02 + k2
v

�
,

single equation for both bound and virtual states (I=b, v):

hnc(q) = 2kvV (q,�ikv ,E)hnc(�ikv )�I,v +
2
⇡

Z
dq0 q02 V (q, q0,E)

hnc(q0)

q02 + k2
I
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Numerical Results

Typical values of Yamaguchi potential parameters to reproduce

ground state binding energy of 20C with E = �3.5 MeV
nn virtual state energy with Enn = �143 keV

�nn = 1.34 fm�1 �nn = 24.5 fm�1

|E19C|(keV) �nc (fm�1) rnc (fm) �nc (fm�1) rnc (fm)
200 0.971 2.736 18.970 0.157
400 0.754 3.233 17.036 0.174
600 0.598 3.720 15.592 0.190
800 0.477 4.255 14.395 0.205
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Numerical Results

Trajectory of 3B bound and virtual states
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Numerical Results

k cot �R
0 - Renormalized zero-range potential

Results for (1 � EK/E0)k cot �R
0 as a function of the colliding neutron

energy EK , obtained with the renormalized zero–range potential. with
corresponding fitting, where E0 is the energy corresponding to the pole
position, and EK ⌘ k2/(2µn,nc).
The n � c binding energies (|E19C|), are given inside the panel.

0 500 1000 1500 2000
E

k
 (keV)

0.01

1

100

(1
-E

k
/E

0
)k

co
tδ

0

R
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fm
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200
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800
860
-200 keV 2008
-400 keV 2008
-600 keV 2008
-800 keV 2008
-860 keV 2008
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Numerical Results

k cot �R
0 , with finite low-range interactions (high values of �)

Results for (1 � EK/E0)k cot �R
0 as a function of the colliding neutron

energy EK , considering a few values of |E19C|, given inside the panel,
obtained with the finite low-range potential (large �s), with
corresponding fitting. E0 is the energy corresponding to the pole
position, and EK ⌘ k2/(2µn,nc).
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Numerical Results

k cot �R
0 , with finite high-range interactions (low values of �

Results for (1 � EK/E0)k cot �R
0 as a function of the colliding neutron

energy EK , obtained with the finite high-range potential (low �s), with
corresponding fitting. E0 is the energy corresponding to the pole
position, and EK ⌘ k2/(2µn,nc).
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Numerical Results

Pole positions in k cot �0 as a function of Enc

From Braaten and Hammer [Phys. Rep.428
(2006) 259] for atom-dimer, we have

aAD = (1.46 � 2.15 tan[s0 ln(a⇤⇤) + 0.09])a.

a0/aB = exp

 
⇡/2 � 0.59654

s0

!

aB where one Efimov state is at the threshold,
and a0 where the atom-dimer scattering length
is zero, or the pole in k cot �0 is at zero scat-
tering energy, can be extended to the case of

the n � n � 18C system, when a�1
nn = 0.

For this mass imbalanced case s0 = 1.12 with
A = 18, and the analogous of the ratio aB/a0 isr

E0
19C

/EB
19C

,

r
EB

19C
/E0

19C
⇡ exp

 
�
⇡/2 � 0.59654

1.12

!
= 0.419 .
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E
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E
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r

EB
19C

/E0
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= 0.44 and for high-range potential

E0
19C

= 940 keV and EB
19C

= 190 keV resulting
r

EB
19C

/E0
19C

= 0.45,
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Numerical Results

Effective-range expression

k cot �R
0 =

�a�1 + b EK + c E2
K

1 � EK/E0
=

d
1 � EK

E0

+ e + f
EK

E0
,

residue: d = � 1
a + bE0 + cE2

0

e = �bE0 � cE2
0

f = �cE2
0
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Numerical Results

Parameters for the effective-range fitting � zero-range results.

Table: Effective-range parameters, obtained by fitting the effective-range
expression to the results shown for the case that we have zero-range
interactions, for a few values of |E19C| (first column).
Adjusting the table given in Yamashita et al. PLB 670, 49 (2008).

|E19C| �1/a b c E0

(keV) (fm�1) (fm.keV)�1 (fm.keV2)�1 (keV)
200 5.155 · 10�3 5.498 · 10�4 5.995 · 10�8 1442.6
400 6.280 · 10�2 6.593 · 10�4 1.004 · 10�7 823.89
600 0.220 9.284 · 10�4 1.508 · 10�7 451.40
800 1.299 3.242 · 10�3 3.447 · 10�7 114.981
850 5.624 1.260 · 10�2 1.1921 · 10�6 28.851
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Numerical Results

Parameters for the effective-range fitting � low-range, rnc .

Table: Effective-range parameters, obtained by fitting Eq. (12) to Fig. 2, when
considering different values of |E19C| (first column) with short-range
Yamaguchi potentials.

|E19C| �1/a b c E0 d rnc

(keV) (fm�1) (fm.keV)�1 (fm.keV2)�1 (keV) (fm�1) (fm)
200 6.028 · 10�3 5.579 · 10�4 5.717 · 10�8 1304 0.831 0.157
400 6.555 · 10�2 6.742 · 10�4 9.144 · 10�8 749.0 0.622 0.174
600 0.234 9.840 · 10�4 1.316 · 10�7 402.9 0.652 0.190
800 1.798 4.467 · 10�3 3.519 · 10�7 78.86 2.153 0.205
830 5.149 1.198 · 10�2 8.578 · 10�7 28.98 5.497 0.208
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Numerical Results

Parameters for the effective-range fitting � high-range, rnc .

Table: Effective-range parameters, obtained by fitting Eq. (12) to Fig. 2, when
considering different values of |E19C| (first column) with high-range Yamaguchi
potentials.

|E19C| �1/a b c E0 d rnc

(keV) (fm�1) (fm.keV)�1 (fm.keV2)�1 (keV) (fm�1) (fm)
200 5.020 · 10�3 5.267 · 10�4 7.580 · 10�8 881.9 0.528 2.736
400 4.216 · 10�2 6.319 · 10�4 2.806 · 10�8 537.7 0.390 3.233
600 0.122 8.395 · 10�4 -2.372 · 10�8 324.8 0.392 3.720
800 0.405 1.746 · 10�3 -2.332 · 10�7 132.9 0.633 4.255
850 0.661 2.603 · 10�3 -4.228 · 10�7 85.60 0.880 4.403
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Numerical Results

The s�wave absorption parameter ⌘ = |e2i�0 | as a function of
projectile neutron energy

left frame: zero–range potential
middle frame: low–range Yamaguchi potential (with large �)
right frame: high–range Yamaguchi potential (with small �)

0 400 800 1200

E
K

 (keV)

0.6

0.7

0.8

0.9

1

η

E
nc

=-200 keV

E
nc

=-400 keV

E
nc

=-600 keV

E
nc

=-800 keV

E
nc

=-850 keV

0 400 800 1200 0 400 800 1200

34/61



Universal scaling of scattering observables for mass-imbalanced three-body systems

Numerical Results

The s�wave elastic n � nc cross section as a function of
projectile neutron energy

red solid lines:
Yamaguchi potential
with low �

blue dashed-lines:
Yamaguchi potential
with high �

black dash-dotted
lines: zero-range
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Conclusion

Resume for the case of n�20C scattering
We investigated the low-energy properties of the elastic s�wave
scattering for the neutron�19C near the critical condition for the
occurrence of an excited Efimov state.

Our calculations extends a zero-range approach to finite-range two-body
interactions, where it was shown that the real part of the elastic s�wave
phase shift (�R

0 ) reveals a zero when the n � n � c system is close to an
excited Efimov state (bound or virtual).

We verified that by considering a finite-range potential, the results for the
s�wave scattering amplitude present universal scaling features, with the
variation of the 19C binding energy for fixed 20C and neutron-neutron
singlet virtual state energies.

The scaling of the effective-range parameters and the pole position of
k cot �R

0 , are in general consistent with the scaling of the zero-range
potential, but the variation of this parameters shows less sensitivity to
the variation of n �18 C subsystem energy for higher range values.

The ratio
q

EB
19C/E0

19C obtained for finite range potentials changing from
0.44 to 0.45 are close to the universal ratio ⇡ 0.419.
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The excited three-body 20C state turns into a virtual state for a large 19C
binding, the threshold moves from 167 keV to 190 keV when the
effective ranges are increased to reasonable physical values.

We have also clarified that the analytical structure of the unitary cut is
not affected by the potential range or mass asymmetry of the three-body
system.

We move to atoms this approach with mass-imbalanced three-particle
systems, in view of the actual interest in verifying Efimov physics with
different mixing of atomic species.
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Efimov Physics in weakly-bound atomic systems
Investigations of Efimov physics in atomic systems have being
studied by several groups. One of the focus have been the 4He
trimer, which was suggested having an excited Efimov state by
Cornelius and Gloeckle [J. Chem.Phys. 85, 3906 (1986)].
Observation of such Efimov state was recently reported by
Kunitski et al., Science 348, 551 (2015).
The studies of Helium trimer have a long story, with realistic
calculations been performed by Kolganova, Motovilov and
Sofianos [Phys.Rev.A 56, R1686 (1997)]. See also, Kolganova,
Phys. of Part. Nucl., 1108 (2015); and Kolganova, E. A.;
Motovilov, A. K.; Sandhas, Few-Body Syst. 51, 249 (1989).
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26 

Atomic weakly bound three-body systems 

A 

B B                                               A-B-B  weakly bound molecules 
                                     
ultra-low binding ~ mK or < mK 
 
133Cs3  (trapped ultracold gas near a Feshbach resonance)  
 

4He3      
4He2 – 7Li    4He2 – 6Li     4He2 – 23Na     

 dimer R4He-4He~ 50 A 

Delfino, Frederico and L.T., “Prediction of a weakly bound excited state in the  
4He2-7Li Molecule”, J. of Chem. Phys. 113 (2000) 7874. 
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Motivations from ultracold atom laboratories
In the unitary limit, two levels are related by an exponential
scaling factor exp (2⇡/s0), where s0 is a constant that varies
according to the mass-ratio mH/mL. For mH = mL, the
energy-ratio is predicted to be ⇠ 515, such that it will be quite
difficult for an experimental verification.
Optimal situations can occur for mH � mL.
In case of mH = 100mL, the ratio between consecutive levels of
the bound-state energy spectrum is given by exp (2⇡/s0) ⇠ 4.7.
We show that the discrete Efimov scaling factor can be well
identified in the corresponding scattering observables of one
atomic species ↵ when colliding with a two-body ↵� bound-state.
Our present results can be quite relevant for the going-on
experimental observations of Efimov physics in cold-atom
laboratories.
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Motivations from ultracold atom laboratories
Heidelberg group is studying the extreme mass-imbalance
mixtures composed by 133Cs and 6Li atomic species [J. Ulmanis
et al, PRL 117 (2016) 153201].
Ultracold degenerate mixtures of alkali-metal-rare-earth
molecules, 174,173Yb�6Li have also been considered by H. Hara
et al [PRL 106 (2011) 205304] and Hansen et al [PRA 84 (2011)
011606(R)].
Therefore, we understand that more favorable conditions are
accessible to probe the rich Efimov physics in cold-atom
laboratories. with low-energy collision of a heavy atom in a
weakly-bound molecule as LiCs or LiYb.
Note that, for the above mentioned examples, we have
mass-ratios as mL/mH =0.034 for LiYb and 0.045 for LiCs
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Figure: Results obtained for � (in arbitrary units) as a function of the collision
energy (in units of B3), for three values of the ↵� binding energy,
B↵�/B3 =0.01 (solid-blue lines), 0.03 (dot-dashed-red lines) and 0.05
(dashed-black lines), given in eight panels. Each panel is for a given fixed
value of the mass-ratio A ⌘ m�/m↵ (indicated inside the panels).
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Figure: The case that m�/m↵ = 0.01, with B↵�/B3 = 0.01.
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Figure: s-wave cross-section as a function of E/B3, corresponding to
mL/mH = 0.01, BHL/B3 = 0.01 (zero-range) and BHL/B3 = 0.0012
(Gaussian). The values of � are obtained with zero-range (solid-blue lines)
and Gaussian (dashed-red lines) potentials.
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Table: Energy positions, E (n)/B3, for the zeros of �, for BHL/B3 =0.01. In the
last column we have energy ratios, with corresponding unitary limit in
parenthesis.

A n = 5 n = 4 n = 3 n = 2 n = 1 E(n+1)

E(n) (ul)

0.01 0.117488 0.031569 0.008279 0.001886 0.000275 !3.7(4.7)
0.02 - 0.220402 0.032841 0.004805 0.000424 !6.7(8.7)
0.03 - - 0.125390 0.012351 0.000905 !10.2(13.6)
0.04 - - - 0.079298 0.005296 !15.0(19.5)
0.05 - - - 0.053320 0.002500 !21.3(26.4)
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Figure: The ratios between the scattering energies corresponding to the
positions of the zeros for the cross-section are shown with blue bullets, in the
same plot already verified for the Efimov spectrum, when varying the mass
ratio.
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Final remarks
The poles of k cot �0 (zeros/minima of the s�wave cross section)
are shown to be directly connected with the Efimov spectrum of
the heavy-heavy-light system near the unitary limit.
This is shown by considering a mass-imbalanced system A << 1
with no interaction between the two-heavy particles and with the
heavy-light sub-system bound with energy close to zero.
By considering the mass ratio between Li and Yb, A =0.034, the
cross-section for the Yb + LiYb collision can in principle present
a couple of zeros. We can imagine a situation where aYB�Li is
adjusted at some large positive values, with the colliding energy
being varied slowly.
The challenge in cold-atom experiments would be to control the
scattering length towards the large values and then observe the
cross-section minima at geometrically spaced colliding energies.
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Adiabatic approach for two heavy and one light particle
For the purpose to show how the inverse square interaction emerges in the low-energy three-body problem, we consider two identical
heavy particles (1 and 2) with equal masses M, with the third particle (3) having mass m ⌧ M. From the corresponding coordinates, r1,

r2, and r3, by introducing the relative ones R = (r1 � r2) and r =

✓
r3 � r1+r2

2

◆
, as well as taking M � m and units such that

~ = 2m = 1, we can write the three-body Schrödinger equation as

H (r, R) =

2

4�
r2

R
µ

�
r2

r

⌫
+

3X

1
Vi

3

5 (r, R), (1)

where µ ⌘ M/(2m), ⌫ ⌘ 2M/(2M + m) and Vi are the interactions between particles j and k (i 6= j 6= k = 1, 2, 3). As the heavy
particles are very slow in comparison with the light particle, we apply the Born-Oppenheimer approximation, by decomposing the wave
function as  (r, R) =  R(r)�(R), where R is a parameter in R(r). In this way, the solution of the equation for the light-heavy particle
system will provide the adiabatic potential, E(R), for the two heavy particles. The coupled system is given by

2

64�
r2

r

⌫
+
X

i=1,2
Vi

 �����r + (�1)i
R

2

�����

!
� E(R)

3

75 R(r) = 0

2

4�
r2

R
µ

+ V3(R) + E(R)

3

5�(R) = E3�(R). (2)

The asymptotic behavior of E(R) is not affected by V3(R), such that one can assume V3(R) = 0. For the light-heavy particles one can
take short-range separable interactions, with V1 and V2 having the operator form �|gihg|. The light-heavy particle system, which can

easily be solved in momentum space by considering Yamaguchi form-factors with g(p) ⌘ (p2 + �2), it is assumed a shallow bound state
with B↵� = ~2/(2ma2

↵� ), where a↵� ⌘ a is the light-heavy scattering length. The scattering length for the two-body sub-system is
assumed to be infinite.
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Adiabatic approach for two heavy and one light particle
The effective potential E(R) (considering V3(R) = 0) in the equation for �(R), within the Born-Oppenheimer approximation [5] and
scaling limit, is given by

E(R) = �
~2

2m⌫
2, where  ⌘ (R) and

"
 �

1

a

#
R = e�R . (3)

The solution in the limit a ! 1 leads to

E(R) = �
~2

2m

A2

⌫R2
, where A = e�A = 0.5671433. (4)

The expression for (R), can also be fitted by considering arbitrary values of a, which will give us

(R) ⇡
1

a
+

 
A

R
+

c

a

!
e
� R

a , (5)

where c ⌘ 0.185. With this, the effective expression,

E(R) = �
~2

2m⌫a2

"
1 +

 
Aa

R
+ c

!
e
� R

a

#2
, (6)

will satisfy both limits R << a and R >> a. In the limit R << a, the radial equation for the two heavy is

~2

M

2

4�
d2

dR2
�
 

2M + m

4m

!
A2

R2

3

5 u = E3u, (7)

where u ⌘ u(R) ⌘ R�(R).
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Adiabatic approach for two heavy and one light particle
For a radial potential ⇤/R2, where ⇤ is dimensionless, the system has no bound-state for ⇤ > �1/4, and is anomalous for ⇤ < �1/4
due to the singularity at R ! 0. There is no lower limit in the energy spectrum, which requires a regularization, such that R > rc , where
rc is a radial cut-off. Therefore, for a boundary condition we fix the wave function to zero at R = rc . Important to note that the geometric
scaling property is independent on the value of rc . So, we will rewrite Eq. (7) as

2

4�
d2

dR2
�

s2
a + 1

4
R2

3

5 u =
M

~2
E3u = k2u, where (8)

sa =

s
2M + m

4m
A2 �

1

4
, and k ⌘

s
ME3
~2

. (9)

Here, we use the definition sa corresponding to the exact numerical factor, usually defined as s0. Let us check the numerical values
obtained from (9), for a few values of M � m, in comparison with the values of s0 given in Braaten and Hammer, Phys. Rep. 428 (2006)
259:

Table: Values of the scaling factor sa and e
⇡
sa , obtained by the adiabatic expression (9) in comparison with the respective exact

values. Note that, the scaling for the energies are e
2⇡
sa = 4.83 (sa = 3.99) in the adiabatic case, with e

2⇡
s0 = 4.70 (s0 = 4.06) for the

exact case.

m/M 0.1 0.05 0.04 0.03 0.02 0.01 0.001

sa 1.1995 1.7456 1.9624 2.2784 2.8057 3.9891 12.675
s0 1.4682 1.9194 2.1142 2.4067 2.9084 4.0612 12.698

e
⇡
sa 13.725 6.0483 4.9574 3.9703 3.0641 2.1980 1.2813

e
⇡
s0 8.4977 5.1383 4.4193 3.6889 2.9452 2.1675 1.2807
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Adiabatic approach for two heavy and one light particle
For the case of bound-states with E3 = �B3 = � ~2

M 2, the solutions are given by the zeros of a modified Bessel function of the third

kind with pure imaginary order is0, u(R) =
p
RKis0

(R). As the wave function must be zero at the boundary condition, where R = rc ,

this is satisfied by discrete values of  = n , where Kis0
(nrc ) = 0, emerging the geometric scaling of the spectrum:

B(n)
3

B(n+1)
3

= e2⇡/s0 (n = 0, 1, 2, ...). (10)

In the scattering case, when E3 = ~2
M k2, the solution for Eq. (8) can be found in the on-line WolframAlpha General Differential Equation

Solver in terms of Bessel functions J⌫ (z):

u(R) =
p

R
h
c1Jis0

(kR) + c2J�is0
(kR)

i
, (11)

where c1 and c2 are arbitrary constants, which can be given by the normalization of the wave function and continuity of the logarithmic
derivative. First, the ratio c2/c1 can be given by the condition that u(R) is zero for some fixed R = 1. Next, we fix the conditions for the
continuity of the logarithmic derivative at R = a � 1. With z ⌘ ka, we have the following expressions to obtain the s�wave phase shifts
�0 ⌘ �0(k):

z cot(z + �0) =
1

2
+ z

2

4
J0is0

(z)J�is0
(k) � Jis0

(k)J0is0
(z)

Jis0
(z)J�is0

(k) � Jis0
(k)J�is0

(z)

3

5

z=ka
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Adiabatic approach for two heavy and one light particle
Here we should note that the continuity of the logarithmic derivative of the wave-function was done at R = a, such that an error is expected
in the results, because we have used R ⌧ a in the expansion for Eq. (6). In order to improve this approximation, our effective potential will
include a Coulomb-like 1/R interaction, with the Eq. (8) being replaced by

0

@�
d2

dR2
�

s2
0 + 1

4
R2

"
g

 
R

a

!#1

A u =
M

~2
E3u = k2u, with

where g(y) ⇡ 1 + c1y + c2y2. (12)

As our approximation should be valid not only for R ⌧ a, but also for R/a ⇠ 1, we need to adjust the potential (6) by a fitting. In case of
a fitting valid up to R ⇠ 3a, we have g(y) ⇡ 1 + 1.64y + 2.43y2. However, the third term of g(y) is relevant for the fitting of the effective
potential for large values of a, such that can be ignored as it is independent on R and proportional to 1/a2. Therefore, it is better to
improve the approximation for smaller values of R, with almost exact values for R/a =0, 0.5 and 1. This can be done with

g(y) ⇡ 1 + 2y + 2.07y2. (13)

The correction we need to add to the potential 1/R2 is �2
⇣

s2
0 + 1/4

⌘
/(aR). With this term in Eq. (12), the solutions are given by

Whittaker functions, such that
u(R) = c1M�iB,�is0

(2ikR) + c2W�iB,�is0
(2ikR),

where B ⌘ (s2
0 + 1

4 ) 1
ka . The Whittaker functions M and W can be written in terms of a confluent hypergeometric functions

1F1(a1, a2 ; z) ⌘ M(a1, a2, z) and U(a1, a2, z):

(M, W )�iB,is0
(2ikR) = e�ikR (2ikR)

1
2 +is0 (M, U)

 
1

2
+ is0 + iB, 1 + 2is0, 2ikR

!
.

56/61



Universal scaling of scattering observables for mass-imbalanced three-body systems

HHL atomic system

Adiabatic approach for two heavy and one light particle
Therefore,

u(R) = e�ikR (2ikR)
1
2 �is0 ⇥

(
c1M

 
1

2
� is0 + iB, 1 � 2is0, 2ikR

!
+ c2U

 
1

2
� is0 + iB, 1 � 2is0, 2ikR

!)
. (14)

To write the two components of u(R) in terms of the same function M, we can use the relation

U(a1, a2, z) =
�(1 � a2)

�(1 + a1 � a2)
M(a1, a2, z) +

�(a2 � 1)

�(a1)
z(1�a2)M(a1 � a2 + 1, 2 � a2, z).

For the derivative of u(R), we can use the relation

d

dz
M(a1, a2, z) =

a1
a2

M(a1 + 1, a2 + 1, z).

1

u

du

dR

�����
R=a

= �ik +
1
2 � is0

a
+

0

@ik �
1
2 + is0

a

1

A
(

U0M+ + (1 � is0)M0U+

U0M � M0U

)

R=a
, (15)

where M ⌘ M(a1, a2, 2ikR), U ⌘ U(a1, a2, 2ikR), M+ ⌘ M(a1 + 1, a2 + 1, 2ikR), U+ ⌘ U(a1 + 1, a2 + 1, 2ikR),

M0 ⌘ M(a1, a2, 2ik), U0 ⌘ U(a1, a2, 2ik), with a1 ⌘
⇣

1
2 � is0

⌘
0

@1 �
1
2 +is0

ika

1

A and a2 ⌘ 1 � 2is0.
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Adiabatic approach for two heavy and one light particle
The continuity of the logarithmic derivative implies

�0 = �ka + cot�1
 

1

ku

du

dR

�����
R=a

!
= �ka + ✓

cot �0 =
cot(ka) cot ✓ + 1

cot(ka) � cot ✓

cot ✓ =

 
1

ku

du

dR

�����
R=a

!
(16)

Therefore, the zeros os 1/(k cot �0) are given by

cot(ka) =

 
1

ku

du

dR

�����
R=a

!
. (17)
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