Spectroscopy of the Fully-Heavy Tetraquarks

Muhammad Naeem Anwar PhD Student ITP-CAS & UCAS, Beijing

In Collaboration with Jacopo Ferretti, Feng-Kun Guo and Bing-Song Zou

will appear soon on arXiv

The 7th Asia-Pacific Conference on Few-Body Problems in Physics, Guilin

Outline

- Motivation & History
- An Effective Field Theory (Nonrelativistic)
- Relativized Diquark Model
- Result Comparison
- Mass Inequality Relations
- Summary

Motivation & History

Does Nature allows the formation of fully-heavy tetraquarks?

An open question...!

- Stability is in ICU currently, discussed by Richard et. al. PRD 95, 054019 (2017)
- $cc\bar{q}\bar{q}$ & $bb\bar{q}\bar{q}$ are argued as stable against strong decays Lipkin PLB 172 (1986)
- *bb* $\overline{b}\overline{b}$ or $cc\overline{c}\overline{c}$ are quite similar to Polyelectrons, $(e^+e^+e^-e^-)$
- In 1945, Wheeler speculated the existence of Positronium molecule, P_{S2}, with very tiny binding
 Wheeler, ANYA Sci. 48, 219 (1946)
- Soon later, Ore put a question mark on the stability of P_{S2} Ore, PR 70, 90 (1946)
- Ore & Hylleraas came up with an elegant prescription of solving equal-mass four-body problem and proved the stability of P_{S2}

Ore & Hylleraas, PR 70, 90 (1946)

• Finally, debate ended on experimental observation

Cassidy & Mills, Nature 449, 195 (2007) 3

EFT Approach

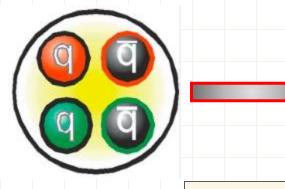
- Lowest-lying heavy $Q\bar{Q}$ treated as weekly-coupled system
- When $mv_Q \gg \Lambda_{\rm QCD}$, dynamics is dominant by short-range interactions Brambilla & Vairo, PRD 62, 094019 (2000)
- First few Υ and B_c considered as weekly-coupled systems
 - Titard & Yndurain PRD 49, 6007 (1994) Brambilla et. al. PLB 513, 381 (2001)
- Doubly- and triply-heavy baryons as weekly-coupled bound states
 Brambilla et. al. PRD 72, 034021 (2005) & Yu Jia, JHEP 10, 073 (2006)
- Lowest $bb\overline{b}\overline{b}$ is also expected to be a weekly-coupled bound, dominant interaction is short-range
- mass scale ~ m_b chromomegnectic interactions are tiny

Nonrelativistic EFT
• Weinstein and Isgur four equal-mass quark Hamiltonian

$$\mathcal{H}^{NR} = \sum_{i=1}^{4} \left[m_i + \frac{p_i^2}{2m_i} \right] + \sum_{i < j} \left[V_{SI}(\mathbf{r}_{ij}) + V_{hyp}(\mathbf{r}_{ij}) \right]$$
• At the leading order, short-distance interaction is taken OGE/color Coulomb

$$V_{SI}(\mathbf{r}_{ij}) = \sum_{i < j} \frac{\lambda_i}{2} \cdot \frac{\lambda_j}{2} \frac{\alpha_s}{|\mathbf{r}_i - \mathbf{r}_j|}$$
• K.E matrix elements

$$T = \frac{p_{\sigma}^2}{2m_1} + \frac{p_{\rho}^2}{2m_2} + \frac{p_{\lambda}^2}{2m_3} = \frac{1}{m_b} \left(p_{\sigma}^2 + p_{\rho}^2 + 2p_{\lambda}^2 \right)$$
• Variational method \rightarrow trail wavefunction (spatial) $\psi(\sigma, \rho, \lambda)_{spatial} = \mathcal{N}^{-1} \prod_{i=1}^{3} \exp\left[-\frac{1}{2}\beta^2 \xi_i^2 \right]$
• Thanks to Ore & Hylleraas prescription of $(e^+e^+e^-e^-)$
 $\psi_{spatial}(bb) = \psi_{spatial}(\bar{b}\bar{b})$
reduces integration variables


Color Representations

Physical color wavefunction of $bb\overline{b}\overline{b}$ system

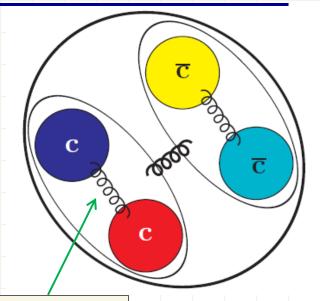
$$|\psi_{\rm c}\rangle = \alpha |\bar{\mathbf{3}}_{12}\mathbf{3}_{34}\rangle + \beta |\mathbf{6}_{12}\bar{\mathbf{6}}_{34}\rangle$$

• $|1_{12}1_{34}>$ or $|8_{12}8_{34}>$ form an independent basis $|\overline{3}_{12}3_{34}>$ and $|6_{12}\overline{6}_{34}>$

- We work in $|\overline{3}_{12}3_{34}>$ basis
- A transition

Flip-flop transition, Okiharu et. al. PRD 72, 014505 (2005)

• Might possible for $Q\bar{Q}q\bar{q}$, but not likely to possible in the case of lowest fully-heavy $QQ\bar{Q}\bar{Q}$, mass < threshold

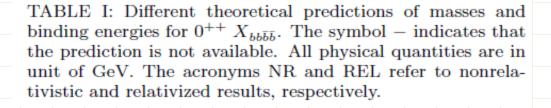

Relativized Diquark Model

- Effective d-o-f is diquark, D_{bb} or $D_{\overline{b}\overline{b}}$
- Interaction b/w bb $(\overline{b}\overline{b})$, OGE + confined pot. of GI model, Godfrey & Isgur, PRD 32, 189-231 (1985)
- No spatial excitations b/w bb or $\overline{b}\overline{b}$
- Due to same flavor, lowest axial-vector D_{bb}

 $M_{bb} = 9845 \text{ MeV}$

• 0⁺⁺ 1*S* fully-bottom tetraquark mass

 $M_{bb\bar{b}\bar{b}} = 18.748 \text{ GeV}$


OGE+ conf.

- All model parameters are fixed from earlier studies, GI
- For $cc\bar{q}\bar{q} \& c\bar{c}q\bar{q}$ study is in progress for the spectrum, will available soon
- For the decays into open-bottom/hidden-bottom meson(s) or singly *b*-baryons, the diquark configurations is not favorable

 \Rightarrow Favorable for doubly *b*-baryonic decays

Result Comparison

Reference	Mass	Binding
	[GeV]	[GeV]
This Work (NR)	18.641	-0.559
This Work (REL)	18.748	-0.942
Karliner et. al. [37]	18.862 ± 0.025	-0.856
Bai et. al. [36]	18.690 ± 0.03	-0.330
Berezhnoy et. al. [42]	18.754	_
Chen <i>et. al.</i> [40]	18.462 ± 0.15	_
Wu et. al. [38]	$18.462 \sim 18.568$	_
Wang [41]	18.84 ± 0.09	_

Why so large B. E ?

Large Binding??? Diquark Model

- Four-body problem is approximated by two-body system
- Six interactions ______ one effective interaction
- All interactions contributing –ive to B.E in $|\overline{3}_{12}3_{34}\rangle$ color configuration, so in diquark model B.E is large
- B.E of the order of $\approx mv_0$ is not irrational
- If we turn on all the interactions among constituents, it is a direct consequence of decreasing B.E
- Over estimation of B.E may be a drawback of diquark model

Mass Inequality (MI) Relations

Using Nussinov's prescription of baryon-meson mass inequality

$$M_{\rm Baryon} \ge \frac{3}{2} M_{\rm Meson}$$
 Nuss

Nussinov, PRL 51, 2081 (1983)

 $cc\bar{q}\bar{q}$ and $bb\bar{q}\bar{q}$ Lipkin PLB 172, 241 (1986)

• Extension to $bb\overline{b}\overline{b}$ system

$$\begin{array}{l} \text{Using } V_{qq} = \frac{1}{2} V_{q\bar{q}} \\ 3H_4(q_1 q_2 \bar{q}_3 \bar{q}_4) = \begin{pmatrix} T_1(q_1) + T_2(q_2) + T_3(\bar{q}_3) + T_4(\bar{q}_4) + V_{q_1q_2} + V_{\bar{q}_3\bar{q}_4} \\ + V_{q_1\bar{q}_3} + V_{q_1\bar{q}_4} + V_{q_2\bar{q}_3} + V_{q_2\bar{q}_4} \\ 3H_4(q_1 q_2 \bar{q}_3 \bar{q}_4) = \begin{pmatrix} T_1 + T_2 + \frac{3}{2} V_{q_1\bar{q}_2} \\ T_1 + T_2 + \frac{3}{2} V_{q_1\bar{q}_2} \end{pmatrix} + \begin{pmatrix} T_3 + T_4 + \frac{3}{2} V_{\bar{q}_3\bar{q}_4} \\ T_3 + T_4 + \frac{3}{2} V_{\bar{q}_3\bar{q}_4} \end{pmatrix} + (T_1 + T_3 + 3V_{q_1\bar{q}_3}) \\ + \begin{pmatrix} T_1 + T_4 + 3V_{q_1\bar{q}_4} \end{pmatrix} + \begin{pmatrix} T_2 + T_3 + 3V_{q_2\bar{q}_3} \\ T_1 + T_4 + 3V_{q_1\bar{q}_4} \end{pmatrix} + \begin{pmatrix} T_2 + T_3 + 3V_{q_2\bar{q}_3} \end{pmatrix} + \begin{pmatrix} T_2 + T_4 + 3V_{q_2\bar{q}_4} \end{pmatrix} \\ = H_{12} + H_{34} + H_{13} + H_{14} + H_{23} + H_{24} \end{array}$$

• Projecting it to $bb\overline{b}\overline{b}$ bound system

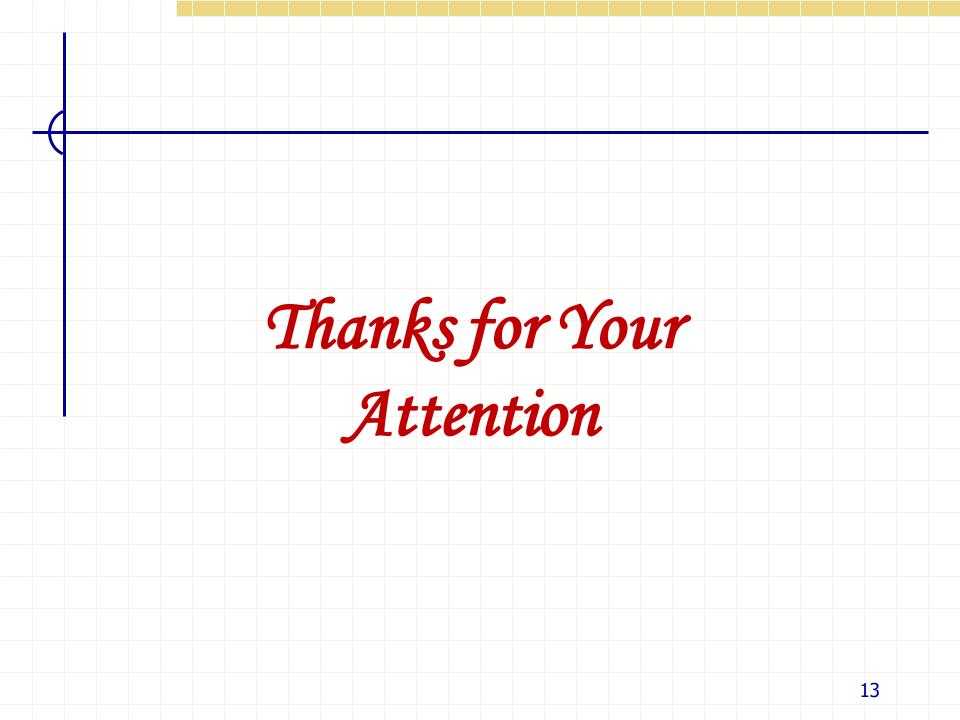
$$3B_{bb\bar{b}\bar{b}} \ge 2\left(\frac{3}{2}B_{b\bar{b}}\right) + 4(3B_{b\bar{b}}) \quad \Rightarrow B_{bb\bar{b}\bar{b}} \ge 5B_{b\bar{b}}$$

MI Relations

 $m_b = 4.8 \text{ GeV}$ $m_c = 1.585 \text{ GeV}$ $\alpha_s = 0.29$

 $B_{b\bar{b}} = 0.152 \text{ GeV} \ B_{c\bar{c}} = 0.102 \text{ GeV} \ \alpha'_s = 0.412$

Relations are somewhat model independent,


However, the numerical values are model dependent

State	Expression for Mass	Lowest Mass (GeV)
$X_{bb\bar{b}\bar{b}}$	$\approx 4m_b + 5B_{b\bar{b}}$	≥ 18.435
$X_{bb\bar{b}\bar{c}}$	$\approx 3m_b + m_c + \frac{5}{2}(B_{b\bar{b}} + B_{b\bar{c}})$	≥ 15.578
$X_{bb\bar{c}\bar{c}}/X_{cc\bar{b}\bar{b}}$	$\approx 2m_b + 2m_c + \frac{1}{2}(B_{b\bar{b}} + B_{c\bar{c}}) + 4B_{b\bar{c}}$	≥ 12.399
$X_{b\bar{b}c\bar{c}}$	$\approx 2m_b + 2m_c + B_{b\bar{b}} + B_{c\bar{c}} + 3B_{b\bar{c}}$	≥ 12.333
$X_{cc\bar{c}\bar{b}}$	$\approx 3m_c + m_b + \frac{5}{2}(B_{c\bar{c}} + B_{c\bar{b}})$	≥ 9.147
$X_{cc\bar{c}\bar{c}}$	$\approx 4m_c + 5B_{c\bar{c}}$	≥ 5.83

• For $X_{bb\overline{b}\overline{b}}$ all the theoretical predictions are above this minima

Summary

- We argue that there is not any Natural restriction on the existence of $bb\,\overline{b}\,\overline{b}$ bound systems
- NREFT with OGE potential \rightarrow results are more reliable than the diquark models
- Decays of $bb\overline{b}\overline{b}$ are an interesting and itself a vast topic, study is ongoing, will be available soon on arXiv
- A single experimental observation provides a good test to presented MI relations
- It is a potential need to scan the energy regime 18.5 \sim 19 GeV, a fully-heavy system will definitely deepen our understanding of QCD
- Looking forward to have more surprises from LHC and long-waiting Belle II

