

The measurements of branching fractions for $\eta_c \rightarrow \phi \phi$ and $\omega \phi$ at BESIII

Guangrui, LIAO GuangXi Normal University

The 7-th Asia-Pacific Conference on Few-Body Problems in Physics Guilin-GuangXi, August 25-30, 2017

APFB, 2017

- Motivation
- BEPCII & BESIII
- Analysis of $\eta_c \rightarrow \phi \phi$ and $\omega \phi$
- Summary

- Decays of η_c into vector meson pairs are highly suppressed at leading order in QCD, due to the helicity selection rule (HSR)^[1].
- Under HSR, the branching fraction for $\eta_c \rightarrow \phi \phi$ was calculated to be $\sim 2 \times 10^{-7[2]}$.
- Improved calculations with next-to-leading order and relativistic corrections in QCD yield varying from 10^{-5[3]} to 10^{-4[4]}.
- Some non-perturbative mechanisms have also been phenomenologically investigated^[5].

^[1] S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 2848(1981).

^[2] V. L. Chernyak and A. R. Zhitnitsky, Nucl. Phys. B **201**, 492 (1982); *erratum ibid*. B **214**, 547(E) (1983).

^[3] Y. Jia and G. D. Zhao, High Energy Phys. Nucl. Phys. 23, 765 (1999) (in Chinese).

^[4] Peng Sun, Gang Hao and Cong-Feng Qiao, Phys. Lett. B 702, 49 (2011).

^[5] Qian Wang, Xiao-Hai Liu and Qiang Zhao, Phys. Lett. B 711 364 (2012).

DM2 Collaboration, Nucl.Phys.B350,1 (1991)

 $Br(J/\psi \rightarrow \gamma \eta_{c}) \cdot Br(\eta_{c} \rightarrow \phi \phi) = (3.9 \pm 1.1) \times 10^{-5}$ $Br(\eta_{c} \rightarrow \phi \phi) = (2.3 \pm 0.8) \times 10^{-3}$

 $\begin{array}{c} 30 \\ (d) \\ 20 \\ 0 \\ 20 \\ 0 \\ 20 \\ 0 \\ 2.8 \\ 2.85 \\ 2.9 \\ 2.9 \\ 2.95 \\ 2.9 \\ 2.95 \\ 3 \\ 3.05 \\ Mass(K^*KK^*K) \\ (GeV/c^2) \end{array}$

BESII Collaboration, PLB578, 16 (2004)

 $Br(J/\psi \rightarrow \gamma \eta_{c}) \cdot Br(\eta_{c} \rightarrow \phi \phi) = (3.3 \pm 0.8) \times 10^{-5}$

Br($\eta_c \rightarrow \phi \phi$)=(1.9±0.6)×10⁻³

Both of the two experiments did not observed $\eta_c \rightarrow \omega \phi$

4

- Data for the analysis: $(223.7\pm1.4) \times 10^{6}$
- Decay chain:

J/ $\psi \rightarrow \gamma \eta_c$, $\eta_c \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$, and $\eta_c \rightarrow \omega \phi \rightarrow \pi^0 \pi^+ \pi^- K^+ K^-$

The multiplicity distribution of photons

3

The χ^2 distribution of kinematic fit

APFB, 2017

$$\eta_{\rm c} \rightarrow \phi \phi$$

The signal boxA : $\left|M_{K^{+}K^{-}} - M_{\phi}\right| \leq 20 \text{MeV/c}^{2}$

Dominant background: $J/\psi \rightarrow \gamma \phi K^+K^ J/\psi \rightarrow \gamma K^+K^-K^+K^-$

Peaking background is estimated to be 26 events.

Non-peaking background, such as $J/\psi \rightarrow \phi f_1(\pi^0 K^+ K^-)$, is estimated to be 75 events. 9

The differential cross section is constructed as:

$$\frac{d\sigma}{d\Omega} = \sum_{helicities} \left| A_{\eta c} \left(\lambda_0, \lambda_{\gamma}, \lambda_1, \lambda_2 \right) + \sum_{J^P} A_{NR}^{J^P} \left(\lambda_0, \lambda_{\gamma}, \lambda_1, \lambda_2 \right) \right|^2$$

The likelihood function for observing the *N*-events in data sample: $L = \prod_{i=1}^{N} P(x_i)$

The background contribution to the log-likelihood value is subtracted from that value of data:

 $\ln L = \ln L_{data} - \ln L_{bg}$

nalysis of $\eta_c \rightarrow \phi \phi$ and $\omega \phi$

 $\chi_g^2 / ndf = 1.1$ APFB, 2017

 $N = 549 \pm 65$ 11

 $\eta_{c} \rightarrow \phi \phi$

$\eta_{c} \rightarrow \omega \phi$

3

nalysis

of $\eta_c \rightarrow \phi \phi$ and $\omega \phi$

The selections for photons and charged tracks are similar as before. For this channel, there are 3 physical photons and four charged tracks.

Analysis region

Analysis of $\eta_c \rightarrow \phi \phi$ and $\omega \phi$

3

No significant η_c signal is observed, the upper limit for the number of signal is calculated at the 90% C.L. by a Bayesian method. APFB, 2017 13

Analysis

of $\eta_c \rightarrow \phi \phi$ and

Systematic uncertainties from different sources

sources	$\eta_c \to \phi \phi$	$\eta_c \to \omega \phi$	
$N_{J/\psi}{}^{[1]}$	0.6	0.6	
Photon	1.0	3.0	
Tracking ^[2]	4.0	4.0	
PID		4.0	. —
$Br(\phi \to K^+ K^-)^{[3]}$	2.0	1.0	[]
$Br(\omega \to \pi^+\pi^-\pi^0)^{[3]}$		0.8	a
Kinematic fit	6.7	2.4	[2
M_{K+K-} mass	0.7	1.1	1
$M_{\pi^+\pi^-\pi^0}$ mass		1.5	
Background	0.9	5.6	
Fit range	0.7	0.2	
η_c Mass and width	1.3	5.6	
Amplitude analysis	+7.1 -26.1		
Combined	$+11.0 \\ -27.4$	10.7	
$Br(J/\psi \to \gamma \eta_c)$	23.5	23.5	04-
			_017

[1] M. Ablikim et al. (BESIII Collaboration),			
arXiv:1607.00738 [hep-ex].			
[2] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 83,			
112005 (2011)			
[3] K. A. Olive <i>et al.</i> (Particle Data Group), Chin. Phys. C 38,			
090001 (2014)			

Calculation of the branching fractions

• $\eta_{c} \rightarrow \phi \phi$ $Br(J/\psi \rightarrow \gamma \eta_{c})Br(\eta_{c} \rightarrow \phi \phi) = \frac{N_{sig}}{N_{J/\psi} \varepsilon Br^{2}(\phi \rightarrow K^{+}K^{-})} = (4.3 \pm 0.5(sat)^{+0.5}_{-1.2}(syst)) \times 10^{-5}$ $Br(\eta_c \rightarrow \phi\phi) = (2.5 \pm 0.3(sat)^{+0.3}_{-0.7}(syst) \pm 0.6(Br)) \times 10^{-3}$ • $\eta_c \rightarrow \omega \phi$ $Br(\eta_c \rightarrow \omega\phi) < \frac{N_{up}}{N_{J/\omega}\varepsilon Br(1-\sigma_{out})} = 2.5 \times 10^{-4}$ $Br = Br(J/\psi \rightarrow \gamma \eta_c) Br(\phi \rightarrow K^+ K^-) Br(\omega \rightarrow \pi^+ \pi^- \pi^0)$ 15

• $\eta_c \rightarrow \phi \phi$

• The largest data sample of J/ ψ and good performance of BESIII allow us to measure the branching fraction of $\eta_c \rightarrow \phi \phi$ with higher accuracy.

Experiment	$Br(J/\psi \to \gamma \eta_c) Br(\eta_c \to \phi \phi) (\times 10)$	⁻⁵) $Br(\eta_c \to \phi \phi) \ (\times 10^{-3})$
BESIII	$4.3 \pm 0.5^{+0.5}_{-1.2}$	$2.5 \pm 0.3^{+0.3}_{-0.7} \pm 0.6$
BESII [1]	3.3 ± 0.8	1.9 ± 0.6
DM2 [2]	3.9 ± 1.1	2.3 ± 0.8
Theoretical	prediction	$Br(\eta_c \to \phi \phi) \; (\times 10^{-3})$
	pQCD[3]	$(0.7 \sim 0.8)$
	${}^{3}P_{0}$ quark model [4]	$(1.9 \sim 2.0)$
	charm meson loop [5]	2.0

- [1] M. Ablikim et al. (BES Collaboration), Phys. Rev. D72, 072005 (2005)
- [2] D. Bisello et al. (DM2 Collaboration), Nucl. Phys. B 350, 1 (1991)
- [3] Y. Jia and G. D. Zhao, High Energy Phys. Nucl. Phys. 23, 765 (1999) (in Chinese).
- [4] H. Q. Zhou et al. Phys. Rev. D 71, 114002 (2005).

Summar

[5] Qian Wang, Xiao-Hai Liu and Qiang Zhao, Phys. Lett. B 711 364 (2012).

previous upper limit^[1].

Summ

[1] K. A. Olive *et al.* (Particle Data Group), Chin. Phys. C **38**, 090001 (2014)

APFB, 2017

Thank You!