

Study of the light hadrons in strangeness production

Ju-Jun Xie (谢聚军)

Institute of Modern Physics, CAS, China (中国科学院近代物理研究所)

The Seventh Asia-Pacific Few-Body Conference on Problems in Physics August 25-29, 2017, Guilin, China

Outline

Introduction

Quark model and the status of low-lying baryon resonances Effective Lagrangian approach and resonance model

$$N^*(2120)$$
 in $\gamma p \to p\phi$ and $\gamma p \to K^+\Lambda(1520)$ reactions
 $\Sigma(1380)$ state in $\Lambda_c^+ \to \eta \pi^+\Lambda$ decay

Summary

SU(3) multiplets of baryons made of u, d, and s

Symmetric spin wavefunction: S=3/2 Symmetric flavor wavefunction: sss Symmetric spatial wavefunction: L=0

A problem encountered:

Violation of the Pauli principle and Fermi-Dirac statistics for the identical strange quark system?

Jacobi coordinate

- An additional degrees of freedom, Colour, is introduced.
- Quark carries colour, while hadrons are colour neutral objects.

 $3 \otimes 3 \otimes 3$ = $(\overline{3} \oplus 6) \otimes 3$ = $(1 \oplus 8) \oplus (8 \oplus 10)$

Outstanding problems for the classical 3q model

• Mass order reverse problem for the lowest excited baryons

uud (L=1) $\frac{1}{2}$ ~ N*(1535) should be the lowest uud (n=1) $\frac{1}{2}$ ~ N*(1440) uds (L=1) $\frac{1}{2}$ ~ Λ *(1405)

harmonic oscillator (2n + L + 3/2) h ω

• The number of predicted states is much less than observed "missing" baryon states : non-existence / to be observed ?

Looking for "missing N^{*} resonances" in $N^* \to \eta N, K\Sigma, K\Lambda, \rho N, \omega N, \phi N, \gamma N, \dots$

ss Component of the Proton and the Strangeness Magnetic Moment

B.S.Zou*

Institute of High Energy Physics, CAS, P.O. Box 918, Beijing 100049, China

D.O. Riska[†]

Helsinki Institute of Physics and Department of Physical Sciences, POB 64, 00014 University of Helsinki, Finland

The effective Lagrangian approach and resonance model

Study "N*(2080)" in $\gamma p \rightarrow p \phi$ and $\gamma p \rightarrow K^+ \Lambda(1520)$ reactions

PRL, 95, 182001 (2005); PRL, 104, 172001 (2010), LEPS Collaboration.

Why N*(2080)

1), $N^*(2080)$, $J^P = 3/2^-$, status: **; 2), $N^*(2090)$, $J^P = 1/2^-$, status: *; 3), $N^*(2100)$, $J^P = 1/2^+$, status: *.

PDG 2010

Quark Model prediction:

N(2080) has significant contributions to the γp ->K⁺A(1520) reaction Capstick, PRD 46, 2864 (1992); 58, 074011 (1998).

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$
 Status: **

OMITTED FROM SUMMARY TABLE Before the 2012 *Review*, all the evidence for a $J^P = 3/2^-$ state with a mass above 1800 MeV was filed under a two-star N(2080). There is now evidence from ANISOVICH 12A for two $3/2^-$ states in this region, so we have split the older data (according to mass) between a three-star N(1875) and a two-star N(2120).

Our model

Fig. 1. (a) Pomeron-exchange, (b) (π, η) -exchange, and (c,d) *s*- and *u*-channel *N**-exchange diagrams for $\gamma p \rightarrow \phi p$ reaction.

Fig. 2. Differential cross section of $\gamma p \rightarrow \phi p$ at forward direction as a function of photon energy E_{γ} . The dotted, dashed, and solid lines denote contributions from nonresonant, resonance with $J^P = 3/2^-$, and their sum, respectively, Data are from Refs, [10,17],

Alvin Kiswandhi, Ju-Jun Xie, Shin Nan Yang, PLB, 691, 214 (2010).

New measurements

FIG. 1: (Color online) Comparison between the charged- and neutral-mode ϕ data from CLAS [1] and model predictions from Kiswandhi *et al.* [3] that include a $D_{13}(2080)$ resonance exchange in the *s*-channel. The data shows a local structure at (a) forward-angles but none at (b) mid-angles.

arXiv:1403.3730

PHYSICAL REVIEW C 89, 055208 (2014)

The γp ->K⁺ $\Lambda(1520)$ reaction

$$\mathcal{L}_{\gamma KK} = -ie(K^- \partial^\mu K^+ - K^+ \partial^\mu K^-)A_\mu, \qquad (1)$$

$$\mathcal{L}_{Kp\Lambda^*} = \frac{g_{KN\Lambda^*}}{m_K} \bar{\Lambda}^{*\mu} (\partial_\mu K^-) \gamma_5 p + \text{H.c.}, \qquad (2)$$

$$\mathcal{L}_{\gamma pp} = -e\bar{p} \left(\mathcal{A} - \frac{\kappa_p}{2M_N} \sigma_{\mu\nu} (\partial^{\nu} A^{\mu}) \right) p + \text{H.c.}, \quad (3)$$

$$\mathcal{L}_{\gamma K p \Lambda^*} = -ie \frac{g_{K N \Lambda^*}}{m_K} \bar{\Lambda}^{*\mu} A_{\mu} K^- \gamma_5 p + \text{H.c.}, \qquad (4)$$

$$\mathcal{L}_{\gamma NN^*} = \frac{ief_1}{2m_N} \bar{N}^*_{\mu} \gamma_{\nu} F^{\mu\nu} N$$
$$-\frac{ef_2}{(2m_N)^2} \bar{N}^*_{\mu} F^{\mu\nu} \partial_{\nu} N + \text{H.c.}, \qquad (5)$$

$$\mathcal{L}_{K\Lambda^*N^*} = \frac{g_1}{m_K} \bar{\Lambda}^*_{\mu} \gamma_5 \gamma_{\alpha} (\partial^{\alpha} K) N^{*\mu} + \frac{i g_2}{m_K^2} \bar{\Lambda}^*_{\mu} \gamma_5 (\partial^{\mu} \partial_{\nu} K) N^{*\nu} + \text{H.c.}, \qquad (6)$$

Scattering amplitudes

 $-iT_i = \bar{u}_{\mu}(p_2, s_{\Lambda^*})A_i^{\mu\nu}u(k_2, s_p)\epsilon_{\nu}(k_1, \lambda),$

$$A_t^{\mu\nu} = -e \frac{g_{KN\Lambda^*}}{m_K} \frac{1}{q^2 - m_K^2} q^\mu (q^\nu - p_1^\nu) \gamma_5 f_c, \qquad (8)$$

$$A_{s}^{\mu\nu} = -e \frac{g_{KN\Lambda^{*}}}{m_{K}} \frac{1}{s - M_{N}^{2}} p_{1}^{\mu} \gamma_{5} \left\{ k_{1} \gamma^{\nu} f_{s} + (k_{2} + M_{N}) \gamma^{\nu} f_{c} \right\}$$

$$+(\not k_1 + \not k_2 + M_N)i\frac{\kappa_p}{2M_N}\sigma_{\nu\rho}k_1^{\rho}f_s\bigg\},$$
(9)

$$A_c^{\mu\nu} = e \frac{g_{KN\Lambda^*}}{m_K} g^{\mu\nu} \gamma_5 f_c, \qquad (10)$$

$$A_{R}^{\mu\nu} = \gamma_{5} \left(\frac{g_{1}}{m_{K}} \not p_{1} g^{\mu\rho} - \frac{g_{2}}{m_{K}^{2}} p_{1}^{\mu} p_{1}^{\rho} \right) \frac{\not k_{1} + \not k_{2} + M_{N*}}{s - M_{N*}^{2} + i M_{N*} \Gamma_{N*}} \\ \times P_{\rho\sigma} \left[\frac{ef_{1}}{2m_{N}} (k_{1}^{\sigma} \gamma^{\nu} - g^{\sigma\nu} \not k_{1}) + \frac{ef_{2}}{(2m_{N})^{2}} (k_{1}^{\sigma} k_{2}^{\nu} - g^{\sigma\nu} k_{1} \cdot k_{2}) \right] f_{R}.$$
(11)

```
Fitted results
```


Ju-Jun Xie, and Juan Nieves, Phys. Rev. C 82, 045205 (2010)

$$\begin{aligned} \text{Model A} & \begin{bmatrix} \frac{1}{t - m_K^2} \rightarrow \left(\frac{s}{s_0}\right)^{\alpha_K} \frac{\pi \alpha'_K}{\Gamma(1 + \alpha_K) \sin(\pi \alpha_K)}, & (10) \\ \text{with } \alpha_K(t) = \alpha'_K(t - m_K^2) = 0.8 \text{ GeV}^{-2} \times (t - m_K^2), \\ \text{Model B} & T_{\text{Regg}} \sim \frac{e\bar{g}_{KN\Lambda^*}}{m_K} \left(\frac{s}{s_0}\right)^{\alpha_K(t)} F(t), \\ T = T_{\text{Hadron}} (1 - \mathcal{R}) + T_{\text{Regg}} \mathcal{R} & F(t) = e^{t/a^2}, \\ \mathcal{R} = \mathcal{R}_W \times \mathcal{R}_t, \\ \mathcal{R}_W = \frac{1}{1 + e^{-(W - W_0)/\Delta W}}, \\ \mathcal{R}_t = \frac{1}{1 + e^{(|t| - t_0)/\Delta t}}, \end{aligned}$$

Fitted results with Regge contributions

New data from CLAS Collaboration: K. Moriya, et.al., PRC 88, 045201 (2013).

Fitted parameters for N(2120) and the total cross section

Nature of N(2120)

- The N(2120) in KΛ(1520) photoproduction is a three-qurak state
- The N(1875) and N(2100) in pφ photoproduction are hadronic molecular states, which can be see as the strangeness partners of the LHCb pentaqurks

Jun He, ``Nucleon resonances N(1875) and N(2100) as strange partners of LHCb pentaquarks," Phys. Rev. D 95, 074031 (2017).

PHYSICAL REVIEW C 95, 015205 (2017)

Role of a triangle singularity in the $\gamma p \rightarrow K^+\Lambda(1405)$ reaction

En Wang, JJX, Wei-Hong Liang, Feng-Kun Guo, and E. Oset

A possible $\Sigma(1380)$ state with $J^P = \frac{1}{2}^{-1}$

Flavor wave functions and masses of the $\frac{1}{2}^{-}$ pentaquark octet and singlet.

Σ_8^+	(<i>Y</i> , <i>I</i>) (0,1)	1 ₃ 1	flavor wave functions $[su][ud]_{\overline{d}}$	masses (MeV) 1 360
Σ_8^0		0	$\frac{1}{\sqrt{2}}([\operatorname{su}][\operatorname{ud}]_{\overline{u}} + [\operatorname{ds}][\operatorname{ud}]_{\overline{d}})$	1 360
Σ_8^-		-1	$[ds][ud]_{\overline{u}}$	1360

Ao Zhang, Y. R. Liu, P.Z. Huang, W.Z. Deng, X.L. chen and S.L. Zhu, High Energy Phys. Nucl. Phys. 29, 250 (2005).

Evidence for a new Σ^* resonance with $J^P = 1/2^-$ in the old data of the $K^- p \to \Lambda \pi^+ \pi^-$ reaction

FIG. 1. Fits to the $\Lambda \pi^-$ mass spectrum with a single Σ^* (left panel) and two Σ^* resonances (right panel) around 1385 MeV with fitting parameters listed in Table I. The experiment data are from Ref. [14].

TABLE I. Fitted parameters with statistical errors and χ^2 over the number of degrees of freedom (ndf) for the fits with a single (Fit1) and two Σ^* resonances (Fit2) around 1385 MeV.

	$M_{\Sigma^*(3/2)}$	$\Gamma_{\Sigma^*(3/2)}$	$M_{\Sigma^*(1/2)}$	$\Gamma_{\Sigma^*(1/2)}$	χ^2/ndf (Fig. 1)	χ^2/ndf (Fig. 2)
Fit1	1385.3 ± 0.7	46.9 ± 2.5			68.5/54	10.1/9
Fit2	$1386.1^{+1.1}_{-0.9}$	$34.9^{+5.1}_{-4.9}$	$1381.3^{+4.9}_{-8.3}$	$118.6^{+55.2}_{-35.1}$	58.0/51	3.2/9

$\Sigma^{*}(1385)$

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

$$I(J^{P}) = 1(\frac{3}{2}^{+})$$
 Status: ****

$\Sigma(1385)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ_1	$\Lambda\pi$	$(87.0 \pm 1.5)\%$	
Γ2	$\Sigma \pi$	(11.7 ±1.5) %	
Γ ₃	$\Lambda\gamma$	$(1.25^{+0.13}_{-0.12})\%$	
Γ_4	$\Sigma^+ \gamma$	(7.0 ± 1.7) $ imes$ 10	_3
Γ5	$\Sigma^-\gamma$	< 2.4 × 10	-4 90%
Γ_6	NK		

The above branching fractions are our estimates, not fits or averages.

$\Sigma(1380)$ in $\Lambda^+_c \rightarrow \eta \pi^+ \Lambda$ decay

Invariant mass distributions

FIG. 5: Invariant mass distributions $d\Gamma/dM_{\pi+\Lambda}$ as a function of $M_{\pi+\Lambda}$.

FIG. 6: Angle distributions $d\Gamma/d\cos\theta^*$ in the c.m. frame of $\pi^+\Lambda$ system as a function of $\cos\theta^*$.

FIG. 7: Energy distributions $d\Gamma/dE_{\pi^+}$ in the rest frame of Λ_c^+ as a function of E_{π^+} .

Ju-Jun Xie and Li-Sheng Geng, arXiv:1703.09502; PRD95, 074024 (2017).

More evidence for $\Sigma(1380)$ from $\gamma p \to K^+(\Sigma \pi)$

PRC 88, 055206 (2013)

(2013) [CLAS Collaboration]

FIG. 5. (Color online) Modulus squared of the I = 1 mesonbaryon unitarized amplitudes $T_{\pi\Sigma,\pi\Sigma}^{I=1}$ (solid line), $T_{\bar{K}N,\pi\Sigma}^{I=1}$ (dashed line), and $T_{\pi\Lambda,\pi\Sigma}^{I=1}$ (dashed-dotted line). Z.H. Guo and J.A. Oller, Mesonbaryon reactions with strangeness -1 within a chiral framework, PRC 87, 035202 (2013)

Poles were found in I = 1which are more dependent on the details of the fits.

L. Roca, and E. Oset, PRC **88**, 055206 (2013)

Monday, Parallel Session 4 (14:55-15:20) by En Wang

Summary

- 1, The N(2120) has significant coupling to KA(1520) channel and gives important contribution to the KA(1520) production, but, its nature is still unclear
- 2, The γp ->p ϕ and γp -> K⁺ Λ (1520) reactions should be studied together

3,The Λ_{c}^{+} -> $\eta\pi^{+}\Lambda$ decay can be used to study the $\Sigma(1380)$ state. *Thank you very much for your attention!*