

AIRFRANCE, KLM

Xing Ya 星雅 Wu Wen 武雯

Why I joined PANDA!

Community

- interdisciplinair: nuclear, hadron & particle physics
- international: 450 scientists from 19 countries
- strong network in other collaborations

Uniqueness

- usage of antiprotons: precision & exploration
- strange, charm, and gluon "factory"

Technology

- data complexity & detector developments
- versatile instrument

High Energy Storage Ring - precision antiprotons

High resolution mode:

- e- cooling : p<8.9 GeV/c
- 10¹⁰ antiprotons stored
- Luminosity up to 2x10³¹ cm⁻²s⁻¹
- $dp/p = 4x10^{-5}$

High intensity mode:

- Stochastic cooling
- 10¹¹ antiprotons stored
- Luminosity up to 2x10³² cm⁻²s⁻¹
- $dp/p = 2x10^{-4}$

Phase 1+2: max. 10¹⁰ antiprotons stored

The "magic" of antiprotons

I. Versatile

Probing QCD at various distance scales

Versatility of antiprotons at PANDA

Systematic and precise tool to rigorously study the dynamics of QCD

The "magic" of antiprotons

II. Discovery by precision and exploration

- a few examples

Charmonium - the "positronium" of QCD

Charmonium - the "positronium" of QCD

Charmonium-like particles - terra incognita

Charmonium-like particles - terra incognita

JPC

Charmonium-like particles - PANDA opportunities

- line shape of X(3872)
- neutral+charged Z-states
- hidden-charm pentaquark
- X,Y,Z decays
- search for h_c', ³F₄, ...
- spin-parity/mass&width of ³D₂

- line shape/width of the h_c
- radiative decays (multipole)
- light-quark spectroscopy

Case study: the nature of the X(3872)

JPC

Strikingly narrow:

$$\Gamma < 1.2 \,\mathrm{MeV} \quad (\Gamma(\psi'') = 27 \,\mathrm{MeV})$$

Suspiciously close to DD* threshold:

$$\Delta E = -0.13 \pm 0.40 \,\mathrm{MeV}$$

Large isospin breaking:

$$B(X \to \rho J/\Psi) \approx B(X \to \omega J/\Psi)$$

Spin-parity:

$$J^{PC} = 1^{++}$$
 PRL110, 222001 (2013)

What is its nature?

Case study: the nature of the X(3872)

Strikingly narrow:

Theoretical line-shape:

- depends on final state ...
- ... and nature of particle
- -> sensitive observable!

PANDA:

- direct formation of X(3872)
- tagging of various final states (neutral&charged)
- access to line-shape parameters

Resonance scanning

Line shape measurement using HESR's superb mass resolution

Resonance scanning

 $\bar{p}p \to X(3872) \to J/\psi \pi^+ \pi^-$

Klaus Goetzen et al.

Luminosity:

 $1170 \; (\text{nb} \cdot \text{day})^{-1}$

Energy resolution:

 $\Delta E = 84 \text{ keV}$

20 points each 2 days data taking!

Width sensitivity down to 100 keV achievable at day-one

The structure of the proton

Time-like Electromagnetic Form Factors
(lepton pair production)

arXiv:1606.01118

Transition Distribution Amplitudes
(meson production)

arXiv:1409.0865

Generalised Distribution Amplitudes (time-like Compton, hard exclusive processes)

Transverse Parton Distribution Functions (Drell-Yan production)

Analytical nature of form factors

Time-like Electromagnetic Form Factors (lepton pair production) arXiv:1606.01118

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{2\beta s} \left[(1 + \cos^2\theta) |G_M|^2 + \frac{1}{\tau} \sin^2\theta |G_E|^2 \right]$$

Analytical nature of form factors

Time-like Electromagnetic Form Factors (lepton pair production) arXiv:1606.01118

BESI

21 scan points 2015 (552 pb⁻¹)

Monte Carlo Sim., R=1 (C. Morales)

L=2 fb⁻¹ 2.10^{32} cm⁻²s⁻¹

~5 months data taking /point

Proton form factors in the unphysical region

I. Zimmermann, J. Boucher

Proton form factors in the unphysical region

I. Zimmermann, J. Boucher

Exploring the hyperon sector

What happens if
we replace one of the
light quarks in the proton
with one - or many heavier quark(s)?

Karin Schoenning

Exploring the hyperon sector

Models based on

- 1) quark-gluon picture*
- 2) the hadron picture**
 - 3) a combination of 1) and 2) ***

PLB 179 (1986) 15; PLB 165 (1985) 187; NPA 468 (1985) 669; PRC 31(1985) 1857; PLB179 (1986) 15; PLB 214 (1988) 317; *** PLB 696 (2011) 352.

PANDA is a hyperon factory!

- A lot of data on $\overline{p}p \to \overline{\Lambda}\Lambda$ near threshold, mainly from PS185 at LEAR*
- Very scarce data bank above 4 GeV
- Only a few bubble chamber events on $\overline{p}p \to \Xi\Xi$
- No data on $\overline{p}p \to \Omega\Omega$ nor $\overline{p}p \to \Lambda_c\Lambda_c$

^{*} See e.g. T. Johansson, AIP Conf. Proc. of LEAP 2003, p. 95

PANDA is a hyperon factory!

Momentum (GeV/c)	Reaction	σ (μb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻² s ⁻¹)
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	11	29 s ⁻¹
4	$\overline{p}p \to \overline{\Lambda}\Sigma^o$	~40	~30	50 s ⁻¹
4	$\overline{p}p ightarrow \overline{\Xi}^+\Xi^-$	~2	~20	1.5 s ⁻¹ Day
12	$\overline{p}p o \overline{\Omega}^+ \Omega^-$	~0.002	~30	~4 h ⁻¹
12	$\overline{p}p \rightarrow \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	~35	~2 day ⁻¹

Karin Schoenning

PANDA is a hyperon factory!

Rich set of polarisation observables

(double) strange and charm baryons

Explore hyperon dynamics above 4 GeV

Karin Schoenning

 Ξ^{-} production $\overline{p}N \rightarrow \Xi^{-}\overline{\Xi}$

HYPERNUCLEI

rescattering in primary target nucleus

deceleration in secondary target

capture of Ξ

atomic cascade of E

 $\Xi^-p \rightarrow \Lambda\Lambda$ conversion fragmentation \rightarrow excited $\Lambda\Lambda$ -nucleus

 γ -decay of $\Lambda\Lambda$ hypernuclei

weak pionic decay

Josef Pochodzalla

Double hypernuclear spectroscopy

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-x [cm]

~33.000 stopped Ξ^{-} 's per day

Josef Pochodzalla

The "magic" of antiprotons

III. Technological innovation

Needle-in-a-haystack

Detector capabilities

The PANDA detector

The PANDA detector

Few-Body Physics with PANDA at FAIR

Few-Body Physics with PANDA at FAIR

http://www-panda.gsi.de/

j.g.messchendorp@rug.nl

Thanks for your attention and support!

Backup

Quadrupole moment of hyperatoms

reaching for the unthinkable!

NPA 954, 323 (2016)

"The precision measurements of X-rays from Ω^- -Pb atoms will certainly require a future generation of accelerators and probably also physicists." - C.J. Batty (1995)

Study "shape" of spin 3/2, |S|=3 Ω^-

Complementary to nucleon structure

Meson cloud correction expected small

ille (= 0.0	5	or QCD	0.024	
	by a		QCD-SR	0.1	Е
	-0.5		χ PT+qlQCD	0.0086	Ρ
	-1.0		Lattice QCD	0.0096 ± 0.0002	Ρ
$ ho_{T3/2}^{\Omega}(ec{b}).$	_1.5	$ ho_{T1/2}^{\Omega}(ec{b}).$			
-1.0 -0.5 0.0 0.5 1.0 1.		0.5 1.0 1.5			
h [fm]	b [fm	าไ			

Model Q_{Ω} [$e \cdot \text{fm}^2$] Reference **NRQM** 0.02 NP33,772 (1981) **NRQM** 0.004 ZPC12,369 (1982) **NRQM** 0.031 PRD25,2395 (1982) SU(3) Bag model 0.052 NP45,109 (1987) NRQM with mesons 0.0057 PRD41,924 (1990) **NQM** 0.028 PRD43,3763 (1991) Lattice QCD 0.0.005 PRD46,3067 (1992) $HB\chi PT$ 0.009 PRD49,3459 (1994) Skyrme 0.024 PLB334,287 (1994) Skyrme 0.0PLA10, 1027 (1995) QM 0.022 ZN52a, 877 (1997) χ QM 0.026 JPG26,267 (2000) GP OCD 0.024PRD65,073017 (2002) EPJC61,311 (2009) PRD80,034027 (2009) PRD83,054011 (2011)

Alexandro et al., PRD82, 034504 (2010)

Josef Pochodzalla

PANDA physics ambitions

Study of the strong force using antiprotons

Hadron spectroscopy & dynamics

- charmonium
- gluons excitations (glueballs, hybrids, ..)
- open charm
- light meson systems

Nucleon structure

- electr. magn. form factors
- TMDs, GPDs, TDAs

Hyperons & Hypernuclei

- $\Lambda\Lambda$ hypernuclei
- hyperfine splitting in Ω atom
- (multi) strange baryons

Hadrons in nuclear medium

- antiproton-A collisions
- nuclear potentials of antibaryons
- charmonium-nucleon interactions

Physics Performance Report for:

PANDA

(AntiProton Annihilations at Darmstadt)

Strong Interaction Studies with Antiprotons

PANDA Collaboration

To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal $\overline{\mathsf{P}}\mathsf{ANDA}$ detector will be build. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed $\overline{\mathsf{P}}\mathsf{ANDA}$ detector is a state-of-the-art internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range.

This report presents a summary of the physics accessible at PANDA and what performance can be expected.

arXiv:0903.305

Intelligent in-situ data processing

Intelligent in-situ data processing

The PANDA detector

Be part of the endeavour!

Be part of the endeavour!

Theory

Connect experiment & theory (partial-wave analysis, ...)

Develop key experiments to find sensitive observables (PANDA, BESIII, Belle2, GlueX, LHC+...)

Theoretical tools to give insights and predictions (Lattice QCD, EFT, FM, ...

Computational challenges
(ab-initio and "full" Lattice QCD)

Experiment

Data analysis at extremes; needle-in-the-haystack tools (smart algorithms & hardware)

Technology

State-of-the-art sensor developments (resolution, radiation-hard, fast & compact, ...)

S=-2 systems

▶ missing mass (K^-,K^+) reactions $\Rightarrow \Xi$ bound state J-PARC

 \Rightarrow Ξ capture \Rightarrow Ξ atoms J-PARC, FAIR

▶ Ξ capture and Ξ -p $\rightarrow \Lambda\Lambda$ \Rightarrow $\wedge \wedge$ hypernuclei J-PARC, FAIR,HI

