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Efimov Physics with Three Bosons
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factors1,2,7 ep=s0 < 22:7 and e22p=s0 < 1/515 (where s0 ¼ 1.00624),
respectively.
Resonant scattering phenomena arise as a natural consequence of

Efimov’s scenario16. When an Efimov state intersects with the
continuum threshold at negative scattering lengths a, three free
atoms in the ultracold limit resonantly couple to a trimer. This
results in a triatomic Efimov resonance. At finite collision energies,
the phenomenon evolves into a triatomic continuum resonance17.
Another type of Efimov resonance18 is found at positive values of a
for collisions between a free atom and a dimer, when Efimov states
intersect with the dimer–atom threshold. While the latter type of
Efimov resonance corresponds to Feshbach resonances in collisions
between atoms and dimers18, triatomic Efimov resonances can be
interpreted as a three-body generalization to Feshbach resonances8.
Striking manifestations of Efimov physics have been predicted for

three-body recombination processes in ultracold gases with tunable
two-body interactions7,9–12,19. Three-body recombination leads to
losses from a trapped gas with a rate proportional to the third
power of the atomic number density. These losses are commonly
described20 in terms of a loss rate coefficient L3. In the resonant case
ðjaj.. lÞ, it is convenient to express this coefficient in the form
L3 ¼ 3CðaÞ"a4=m, separating a general a 4-scaling20,21 from an
additional dependence9,10,12 C(a). Efimov physics is reflected in a
logarithmically periodic behaviour C(22.7a) ¼ C(a), corresponding
to the scaling of the infinite series of weakly bound trimer states. For
negative scattering lengths, the resonant coupling of three atoms to
an Efimov state opens up fast decay channels into deeply bound
dimer states plus a free atom.
Triatomic Efimov resonances thus show up in giant recombination

loss. This striking phenomenon was first identified in numerical
solutions to the adiabatic hyperspherical approximation of the three-
body Schrödinger equation, assuming simple model potentials and
interpreted in terms of tunnelling through a potential barrier in the
three-body entrance channel9. A different theoretical approach7,10,
based on effective field theory, provides the analytic expression
CðaÞ ¼ 4;590sinhð2h2Þ=ðsin2½s0lnðjaj=a2Þ% þ sinh2h2Þ. The free pa-
rameter a2 for the resonance positions at a2, 22.7 a2,… depends on
the short-range part of the effective three-body interaction and is
thus not determined in the frame of the universal long-range theory.
As a second free parameter, the dimensionless quantity h2 describes
the unknown decay rate of Efimov states into deeply bound dimer
states plus a free atom, and thus characterizes the resonance width.
Our measurements are based on the magnetically tunable inter-

action properties of caesium atoms22 in the lowest internal state. By
applying fields between 0 and 150 G, we varied the s-wave scattering
length a in a range between22,500a0 to 1,600a0, where a0 is Bohr’s
radius. Accurate three-body loss measurements are facilitated by the
fact that inelastic two-body loss is energetically forbidden20. The
characteristic range of the two-body potential is given by the van der
Waals length23, which for caesium is l< 100a0. This leaves us with
enough room to study the universal regime requiring jaj.. l. For
negative a, a maximum value of 25 is attainable for jaj=l. Efimov’s
estimate 1

p ln ðjaj=lÞ for the number of weakly bound trimer states2

suggests the presence of one Efimov resonance in the accessible range
of negative scattering lengths.
Our experimental results (Fig. 2), obtained with optically trapped

thermal samples of caesium atoms in two different set-ups (see
Methods), indeed show a giant loss feature marking the expected
resonance. We present our data in terms of a recombination length9

r3 ¼ ½2m=ð
ffiffiffi
3

p
"ÞL3%1=4, which leads to the simple relation

r3=a¼ 1:36C1=4. Note that the general a4-scaling corresponds to a
linear behaviour in r3(a) (straight lines in Fig. 2). A fit of the analytic
theory7,10 to our experimental data taken for negative a at tempera-
tures T < 10 nK shows a remarkable agreement and determines the
resonance position to a2 ¼ 2850(20)a0 and the decay parameter to
h2 ¼ 0.06(l). The pronounced resonance behaviour with a small
value for the decay parameter (h2 ,, 1) demonstrates a sufficiently

long lifetime of Efimov trimers to allow their observation as distinct
quantum states.
All the results discussed so far are valid in the zero-energy collision

limit of sufficiently low temperatures. For ultralow but non-zero
temperatures the recombination length is unitarity limited19 to
5:2"ðmkBTÞ21=2. For T ¼ 10 nK this limit corresponds to about
60,000a0 and our sample is thus cold enough to justify the zero-
temperature limit. For 250 nK, however, unitarity limits the recom-
bination length to about 12,000a0. The Efimov resonance is still
visible at temperatures of 200 and 250 nK (filled triangles and open
diamonds in Fig. 2). The slight shift to lower values of jaj suggests the
evolution of the zero-energy Efimov resonance into a triatomic
continuum resonance17. In further experiments at higher tempera-
tures (data not shown) we observed the resonance to disappear above
,500 nK.
For positive scattering lengths, we found three-body losses to be

typically much weaker than for negative values. Our measurements
are consistent with a maximum recombination loss of C(a) < 70, or
equivalently r 3 < 3.9a, as predicted by different theories9,11,12

(straight line for a . 0 in Fig. 2). For a below 600a0 the measured
recombination length significantly drops below this upper limit
(inset in Fig. 2). The analytic expression from effective field theory7,12

for a . 0 reads CðaÞ ¼ 67:1e22hþ ðcos 2½s0 lnða=aþÞ%þ sinh2hþÞþ
16:8ð12 e24hþ Þ with the two free parameters aþ and hþ. The first
term describes recombination into the weakly bound dimer state
with an oscillatory behaviour that is due to an interference effect
between two different pathways9,11. The second term results from
decay into deeply bound states. We use this expression to fit our data
points with a. 5l< 500a0. This somewhat arbitrary condition is
introduced as a reasonable choice to satisfy a.. l for the validity of
the universal theory. The fit is quite insensitive to the value of
the decay parameter and yields hþ , 0.2. This result is consistent
with the theoretical assumption10 of the same value for the decay

Figure 2 | Observation of the Efimov resonance in measurements of
three-body recombination. The recombination length r3 / L1=43 is plotted
as a function of the scattering length a. The dots and the filled triangles show
the experimental data from set-up A for initial temperatures around 10 nK
and 200 nK, respectively. The open diamonds are from set-up B at
temperatures of 250 nK. The open squares are previous data20 at initial
temperatures between 250 and 450 nK. The solid curve represents the
analytic model from effective field theory7 with a2 ¼ 2850a0,
aþ ¼ 1,060a0, and h2 ¼ hþ ¼ 0.06. The straight lines result from setting
the sin2 and cos2-terms in the analytic theory to 1, which gives a lower
recombination limit for a , 0 and an upper limit for a . 0. The inset shows
an expanded view for small positive scattering lengths with a minimum for
C(a) / (r3/a)

4 near 210a0. The displayed error bars refer to statistical
uncertainties only. Uncertainties in the determination of the atomic number
densities may lead to additional calibration errors for r3 of up to 20%.
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Experimental Evidences of Efimov Effect

remains unaffected within the uncertainties of our temper-
ature determination (∼15%).
The evolution of nCs is given by the rate equation

_nCs ¼ −LCs
1 nCs − LLiCsCs

3 nLin2Cs − LCs
3 n3Cs: ð1Þ

Here, LCs
1 , LLiCsCs

3 , and LCs
3 are the loss coefficients for Cs

background collisions, Liþ Csþ Cs three-body collisions,
and Csþ Csþ Cs three-body collisions, respectively. The
inter- and intraspecies two-body losses are ignored in
Eq. (1) because the atoms are in the energetically lowest
states and thus only exhibit elastic two-body collisions.
Under the conditions of the experiment the temperature
dependence of the three-body loss coefficients [21] can be
neglected, and nLi can be assumed constant to a good
approximation. Because the temperature is nearly constant,
the change in density can be directly linked to the change in
atom number.
Our analysis shows that the Cs-atom loss curves are well

described by Liþ Csþ Cs and Csþ Csþ Cs losses, while
a description assuming Liþ Liþ Cs and Csþ Csþ Cs
losses alone does not reproduce the shape of the loss curves
[30]. This verifies that Liþ Liþ Cs three-body losses are
indeed strongly suppressed due to Fermi statistics and
confirms that the observed Efimov resonances originate
from the Liþ Csþ Cs channel, which is the only channel
for this mixture that is predicted to support universal three-
body bound states [3,5]. This is also reflected in the loss
ratio of Li to Cs atom numbers of ∼1∶2 in the entire range
of the magnetic fields probed.
In order to extract the loss rates from our measurements,

we integrate Eq. (1) over the spatial coordinates and fit the
solution to the time-dependent Cs atom number loss curves,
with LLiCsCs

3 as the only fitting parameter. LCs
1 and LCs

3 are
independently obtained from single species measurements,
and therefore do not enter as fitting parameters. We note
that a close-by intraspecies Efimov resonance in Cs [31]
at 853 G does not influence determination of the Li-Cs
Efimov resonances, since LCs

3 is approximately constant in
its direct vicinity and changes only in the region aLiCs >
−250a0 [30].
The extracted three-body loss coefficient LLiCsCs

3 is
depicted in Fig. 2. We estimate that the systematic error
for the absolute value of LLiCsCs

3 is on the order of 80%, due
to uncertainties in measured atom numbers, temperatures,
and trap frequencies. Additionally, the gravitational sag
reduces the spatial overlap of the atom clouds. We estimate
that this effect reduces the spatial integral over the densities
in Eq. (1) by ∼20%, and we include this reduction into our
model. Day-to-day drifts in the beam pointing of the dimple
trap might cause fluctuations of the overlap.
A precise determination of the field-dependent scattering

length aðBÞ is essential for a quantitative analysis. In
particular, the exact value of the scattering pole of the
Feshbach resonance BFR, where jaj diverges, plays a

crucial role. We measure this value via radio frequency
spectroscopy of universal dimers, which yields BFR ¼
842.9ð2Þ G and ΔB ¼ 61.4ð7Þ G for the resonance posi-
tion and width, respectively [30]. These values are in
excellent agreement with an extensive study of Li-Cs
Feshbach resonances via three different models [32].
Inserting these quantities into the relation

aðBÞ ¼ abg½ΔB=ðB − BFRÞ þ 1& ð2Þ

(cf. [33]) allows us to determine the abscissa in Fig. 2,
where abg ¼ −28.5a0 [26].
We observe two distinct resonances in the LLiCsCs

3

measurements, which are consistent with the enhanced
atom losses in Fig. 1. For large values of the scattering
length, the loss rate approaches a value that is consistent
with an order of magnitude estimate for the unitarity limit
LLim
3 ≈ 10−21 cm6=s for the temperatures in our experi-

ments [34].
Due to the lack of a finite temperature model for

heteronuclear Efimov resonances similar to the one in
Ref. [21], the position of the resonances is determined
via a fit of a Gaussian profile with linear background,
which results in B0¼848.90ð6Þstatð3Þsys G and B1¼
843.85ð1Þstatð3Þsys G. Using Eq. (2), we assign the
scattering lengths að0Þ− ¼−320ð3Þstatð2Þsysð10Þrfa0 and
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FIG. 2 (color online). Three-body loss coefficient LLiCsCs
3

plotted versus the inverse scattering length 1=a. The blue
diamonds show the mean of three LLiCsCs

3 measurements, where
the error bars are given by the standard error. The red solid lines
show Gaussian profiles with linear background fitted to the data
to determine the position of the two Efimov resonances. The grey
area illustrates the systematic error of 80% for the absolute value
of LLiCsCs

3 . The inset shows a zoom in to the region of the first
excited Efimov resonance.
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resonance positions and uncertainties. Further details on
the fit and the determination of the resonance positions
and uncertainties are given in Ref. [28]. We determine
the positions of the three Efimov resonances to be
B1 ¼ 848.55ð12Þstatð3Þsyst, and B2 ¼ 843.82ð4Þstatð3Þsyst,
and B3 ¼ 842.97ð3Þstatð3Þsyst G, where ðÞstat denotes the
statistical uncertainty and the systematic uncertainty of
30 mG arises from the daily magnetic field drift.
A precise determination of the Feshbach resonance

position is crucial to check the scaling symmetry. Two
independent methods are developed here. First, we observe
that the strongest dip (Fig. 3) is ubiquitous in all measure-
ments, even at high temperatures where Efimov features
are indiscernible. This indicates that the strongest dip is
associated with the Feshbach resonance. Fits to the lowest
temperature data [Fig. 3(c)] locate the Feshbach resonance
at B0 ¼ 842.75ð1Þstatð3Þsyst G.
We convert our atom loss measurement into a spectrum

of the recombination loss coefficient, see Fig. 4, based on a
rate equation model [28]. The spectrum shows clearly three
Efimov resonance features and can be compared with
theoretical calculation. In addition, after comparing the
extracted K3 with a model that captures the steep rise of
K3 for a > 0 [28], we find the best agreement between the
experiment and themodel whenB0 ¼ 842.75ð1Þstatð3Þsyst G.
The results from both our methods to determine B0 agree
with each other.

The separations between the Efimov resonances and the
Feshbach resonance ΔBn ¼ Bn − B0 are ΔB1 ¼ 5.80ð12Þ,
ΔB2 ¼ 1.07ð4Þ, and ΔB3 ¼ 0.22ð3ÞG; the uncertainties
include both statistical and systematic errors. Remarkably,
they closely follow a geometric progression ΔB1∶ΔB2∶
ΔB3 ≈ 1∶1=5∶1=52 and provide direct evidence of the
discrete scaling symmetry. (Note that ΔBn ∝ −1=aðnÞ−
near the Feshbach resonance.) More precisely, using an
updated scattering model for the Li-Cs Feshbach resonance
[28], we determine the Efimov resonances in scattering
length to be að1Þ− ¼ −323ð8Þa0, að2Þ− ¼ −1635ð60Þa0, and
að3Þ− ¼ −7850ð1100Þa0, where a0 is the Bohr radius. Two
scaling constants are extracted: λ21 ¼ að2Þ− =að1Þ− ¼ 5.1ð2Þ
and λ32 ¼ að3Þ− =að2Þ− ¼ 4.8ð7Þ, which mutually agree within
uncertainty. The averaged scaling constant λexp ¼ 4.9ð4Þ is
in good agreement with the predicted value λ ¼ 4.88 for
LiCs2 Efimov states [21,23].
Even though the observed scaling ratios are consistent

with the predicted value, we would like to point out the
practical factors that could contribute to differences
between experiment and theory. The first Efimov resonance
can be shifted by finite-range corrections given that it
occurs at a scattering length near the van der Waals length
of Cs-Cs (rCsCs ¼ 101a0) and Li-Cs (rLiCs ¼ 45a0). The
location of the Efimov resonance can also be shifted by
finite temperature and finite trap size effects, which are
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theory community that the Efimov e↵ect should be ob-
servable, despite the dearth of experimental confirmation
prior to 2006.

Then, however, this field received a tremendous in-
jection of excitement in 2006 when recombination rate
measurements for a Cs gas by Grimm’s Innsbruck group
(Kraemer et al., 2006) observed the aforementioned Efi-
mov resonance in the three-body rate coe�cient K3 at
a large negative scattering length, in agreement with the
1999 prediction (Esry et al., 1999). That study provided
the first experimental confirmation of the Efimov e↵ect.
The scattering length dependence of measured recombi-
nation rates in that 2006 experiment closely resembled
the predicted shape (Esry et al., 1999) for a three-body
Efimov resonance, but a skeptic might argue that obser-
vation of one resonance alone might not be convincing
evidence of its Efimov character. However, subsequent
observations of three-body recombination in numerous
systems have solidified, confirmed, and extended that in-
terpretation beyond any doubt. The most dramatic sig-
nature has been observing multiple resonances, separated
by the predicted Efimov factor of 22.7 in the scattering
length, and multiple predicted interference minima, sep-
arated by that same universal factor (Braaten and Ham-
mer, 2006; Esry et al., 1999; Greene, 2010; Nielsen and
Macek, 1999).

A further unexpected level of universality emerged
from experimental studies with three-atom recombina-
tion. The three-body parameter had been thought by
virtually all theorists to occur “randomly”, and to vary
widely from system to system. The three-body parame-
ter can be viewed as setting the energy E0 of the lowest
Efimov state at a = 1 (unitarity), or alternatively, as

the smallest scattering length a
(1)
� at which a zero-energy

Efimov resonance occurs and thus sets the location of all
subsequent resonances through the universal scaling for-

mula, a(n)� = a
(1)
� e(n�1)⇡/s

0 . The remarkable surprise was
experimental evidence from the Grimm group (Berninger
et al., 2011) and several others (Dyke et al., 2013; Gross
et al., 2009, 2010, 2011; Roy et al., 2013; Wild et al.,
2012) which showed that for homonuclear three-body sys-
tems dominated by van der Waals (vdW) �C6r

�6 two-
body interactions at long range, an approximate van der

Waals universality fixes a
(1)
� ⇡ �10`vdW in terms of the

characteristic length `vdW ⌘ [mC6/(16~2)]1/4. As Fig. 5
shows, the three-body parameter is fixed to within ap-
proximately 15% by this simple relation. Shortly after
this experimental evidence was published, a theoretical
interpretation emerged from (Wang et al., 2012a) which
showed that a classical suppression of the two-body prob-
ability density whenever two-particles approach to within
r < `vdW produces an e↵ective hyperradial barrier that
restricts three-body motion at R < 2`vdW and sets the
three-body parameter. To clarify, there is a classical sup-
pression because the probability of a classical particle

having local velocity v(r) to exist in a region of width
�r is proportional to �r/v(r), the time spent by the
particle in that region in each traversal. In the pres-
ence of an attractive van der Waals force, the velocity
increases suddenly and dramatically when the interpar-
ticle distance r decreases to less than the van der Waals
length, causing this probability density to plummet in
such regions. The existence of the hyperradial barrier was
subsequently confirmed and extended in further studies
by (Naidon et al., 2014a,b, 2012) which stressed particu-
larly that a key element of this van der Waals universality
is a change from a very floppy equilateral to a roughly
linear geometry that occurs near R ⇡ 2`vdW; the geom-
etry change then triggers strong non-Born-Oppenheimer
repulsion and suppresses the three-body solution at all
smaller hyperradii in the relevant potential curve. An
alternative toy model addressing the implications of two-
body van der Waals forces on the three-body approxi-
mate universality has also been published as a preprint
by (Chin, 2011). Other treatments aimed at this issue
of three-body parameter universality that start from a
two-channel or narrow two-body resonance point of view
are presented in (Schmidt et al., 2012; Sørensen et al.,
2012; Wang and Julienne, 2014).

6Li 7Li 39K 85Rb 133Cs
0

5

10

15

|a
-(1

) |/
R

v
d

W

Figure 5 (Color online) Three-body parameter scaled by `vdW
for three equal mass particles. Specifically, this quantity is the
value of the (negative) atom-atom scattering length at which
the first universal Efimov resonance is observable in a zero en-
ergy three-body recombination process. The error bars have
been calculated as the weighted mean of the experimental
results reported in Sec.III.

The case of heteronuclear universal Efimov physics ap-
pears to be significantly more complicated, e.g. for the
particularly interesting case of heavy-heavy-light (HHL)
systems that exhibit more favorable Efimov scaling than
for the homonuclear three-body systems. But a degree of
van der Waals universality has been predicted in (Wang
et al., 2012d) to still be relevant for the “Efimov favored”
HHL case. The complexity grows for these heteronuclear
systems because more parameters control the universal-
ity, namely two van der Waals lengths and a mass ratio,
and the universal energy spectrum now depends on two

20

general di↵erent in the 6Li system. However, they are all
large and negative and therefore the system can be ap-
proximately mapped onto and compared with an Efimov
system with three identical bosons in identical spin sub-
states. In the following discussion, it should be kept in
mind that this mapping is an approximation. It is argued
by (Wenz et al., 2009) that one conjectured mapping, a
definition of an e↵ective “homonuclear” scattering length
aave that applies when all three interspecies scattering
lengths are large and negative is:

a4ave ⌘
1

3
(a212a

2
23 + a213a

2
23 + a212a

2
13). (58)

Nevertheless, quantities in Efimov physics such as the
loss to deeply bound dimers and the three body param-
eter should more rigorously be understood to depend
in general on all three separate scattering lengths for a
fermionic atom such as 6Li, i.e. on a12, a23, a13. In gen-
eral, many of the experimental investigations have relied
upon radio-frequency (RF) techniques for the identifica-
tion of Efimov trimers. These methods employ RF pulses
to form di↵erent Efimov states, which are detected as
atom loss, thus leading to the characterization of their
binding energies (Lompe et al., 2010a; Nakajima et al.,
2010, 2011a; Wenz et al., 2009). The measured trimer en-
ergies show a clear dependence on the applied magnetic
field close to the two-body Feshbach resonances, which
has been viewed as evidence for deviations from Efimov’s
universal three-body physics scenario . In particular, the
geometric scaling factor � =22.7 is not observed between
successive resonances, and this has been interpreted as a
magnetic field dependence of the three-body parameter.

The apparent non-universality of 6Li has been an open
question in the last decade, leading two di↵erent non-
universal models beyond non-universal two-body inter-
actions (Nakajima et al., 2010). However, (Huang et al.,
2014a) have shown that accounting for a realistic two-
body energy dependent scattering length and taking into
account finite temperature e↵ects the three-body param-

eter for 6Li turns out to be a
(1)
� /`vdW = �7.11 ± 0.6

which is very similar to the results obtained for identical
bosons Table I and Table II. Moreover, the geometric
scaling factor shows a 10% deviation with respect to � =
22.7; the universal expected value.

2. 7Li

The Efimov physics in bosonic 7Li has been extensively
studied through characterizations of maxima and min-
ima of the three-body loss coe�cient (Dyke et al., 2013;
Gross et al., 2009, 2010, 2011; Machtey et al., 2012a;
Pollack et al., 2009), as well as using radio-frequency
fields to measure the binding energies of weakly bound
trimers (Machtey et al., 2012b). In particular, the Rice
group identified the ground Efimov state for 7Li in the

|m
F

= 1i hyperfine state as a resonance in the three-body
loss coe�cient for a < 0. An initial suggestion in (Pol-
lack et al., 2009) that they had also observed the first

excited Efimov resonance a
(2)
� was later attributed to a

calibration error. The recalibration, published in (Dyke
et al., 2013), also corrected the position of the first Efi-

mov resonance to a
(1)
� = -252 ±10. Efimov physics was

also observed on the a > 0 branch of the spectrum as the
expected minima in the three-body loss coe�cient (Pol-

lack et al., 2009), yielding a
(1)
+ = 89± 4 and a

(2)
+ = 1420

± 100 when the recalibration of (Dyke et al., 2013) was

applied. The ratio a
(2)
+ /a

(1)
+ = 16 ± 2 deviates apprecia-

bly from the expected universal ratio of 22.7,(Esry et al.,
1999; Nielsen and Macek, 1999) but this level of devia-
tion for the first two Efimov features is not unexpected,
based on theoretical calculations.

m
F

a
(1)
+ (a0) �a

(1)
� (a0) |a(1)

� |/`vdW
0 243 ± 35 264 ± 11 8.52 ± 0.35
+1 247 ± 12 268 ± 12 8.65 ± 0.39

Table I Fitting parameters to an universal theory obtained
by measuring the three-body loss coe�cient in 7Li. Results
taken from (Gross et al., 2010).

Similar results for the maxima of the three-body loss
rate were obtained by Gross et al. (Gross et al., 2009,
2010, 2011) for two di↵erent hyperfine states: |m

F

= 1i
and |m

F

= 0i as shown in TableI. However di↵erent re-

sults for a(1)+ in comparison with (Pollack et al., 2009)
were obtained as displayed in Table I. This discrepancy

for a(1)+ has been explained as a distinct magnetic field-
scattering length conversion through a di↵erent charac-
terization of the same Feshbach resonance (Gross et al.,
2010). In Table I it is also observed the universal char-

acter of the three-body parameter a
(1)
� in terms of the

van der Waals length `vdW for 7Li-7Li. In particular,

the values obtained for a(1)� /`vdW are very similar to the
values observed in cesium (Berninger et al., 2011), rubid-
ium(Wild et al., 2012) and potassium (Roy et al., 2013).

3. 39K

The study of Efimov states in bosonic 39K at ultracold
temperatures has been developed mainly by the LENS
group (Roy et al., 2013; Zaccanti et al., 2009). In par-
ticular, the study of (Roy et al., 2013) is a remarkable

exploration of the a(1)� three-body parameter universality,
even including narrow Feshbach resonances. This study
was carried out by employing di↵erent spin states m

F

, as
well as di↵erent Feshbach resonances in an ultracold gas
of 39K, some showing open-channel dominance while oth-
ers are narrower closed-channel-dominated resonances.
Resonances with a small resonance strength s

res

, (Chin

21

m
F

R⇤(a0) s
res

�a
(1)
� (a0) |a(1)

� |/`vdW T (nK)
0 22 2.8 640±100 10.0± 1.6 50±5
0 456 0.14 950±250 14.7± 3.9 330±30
0 556 0.11 950±150 14.7± 2.3 400±80
+1 22 2.8 690±40 10.7± 0.6 90±6
-1 23 2.6 830±140 12.9±2.2 120±10
-1 24 2.5 640±90 10.0±1.4 20±7
-1 59 1.1 730±120 11.3±1.9 40±5

Table II Experimental determined three-body parameter a�
for di↵erent Feshbach resonances and spin states m

F

in 39

K taken from (Roy et al., 2013). R⇤ represents the intrinsic
length scale and associated with it, the resonance strength
s
res

. The value for the three-body parameter as a function of
the van der Waals length `vdW = 64.49 a0 is also reported, as
well as the initial temperature T , which implies a saturation
limit of the three-body recombination rate because the S-
matrix is unitary.

et al., 2010) i.e., narrow resonances, have an intrinsic
length scale R⇤ = ~2/(ma

bg

�µ) (Chin et al., 2010), where
a
bg

represents the background scattering length, m is the
reduced mass and �µ is the change in the magnetic mo-
ment between the initial and final states. In such a sce-
nario was predicted that the Efimov physics would be
dominated by the intrinsic length associated with the

resonance R⇤, in particular, a(1)� = �12.90R⇤ (Gogolin
et al., 2008; Mora et al., 2011; Petrov, 2004). However,
the experimental work of (Roy et al., 2013) revealed a
completely di↵erent behavior, as shown in Table II, where

the three-body parameter |a(1)� |/`vdW ⇠ 10, which turns
out to be very similar to the experimental and theoretical
values for the case of broad 2-body resonances (Berninger
et al., 2011; Naidon et al., 2014a; Wang et al., 2012b),

i.e., |a(1)� |/`vdW = 9.5. This striking result implies that
the intrinsic length scale associated with a narrow reso-
nance apparently plays no role in the determination of
the three-body parameter. Thus, for systems with long-
range dominant van der Waals interactions, the three-
body parameter seems to be universal.

4. 85Rb

The study of Tan’s contact in an ultracold gas of 85Rb
has been realized by (Wild et al., 2012). In particular
the two-body and three-body contact were determined,
as well as the three-body recombination rate constant,
by varying the two-body scattering length in a sweep of
the magnetic field through a Feshbach resonance. The
two-body contact is an extensive thermodynamic magni-
tude proportional to the derivative of the internal en-
ergy of the ultracold gas with respect to the scatter-
ing length (Combescot et al., 2009; Schakel, 2010; Tan,
2008a,b,c; Werner et al., 2009), i.e, C2 / dE/da. The
three-body contact C3 is defined in terms of the deriva-
tive of the internal energy with respect to the three-body

parameter C3 / dE/da� (Braaten et al., 2011; Castin
and Werner, 2011). 1

The measurements of the three-body recombination
rate were performed in dilute, ultracold, non-condensed
clouds containing 1.5 ⇥ 105 atoms of 85Rb at a tem-
perature T =80 nK. Then the magnetic field was varied
through a Feshbach resonance in order to explore the re-
gion of negative scattering lengths. The obtained three-
body recombination rate was fitted to the expected form
for the Efimov three-body rate (Braaten and Hammer,

2006), obtaining a
(1)
� = -759 ± 6 a0. The utilized fitting

function is only valid at T = 0, and hence the fitting was
realized for a < 1/kthermal, where kthermal =

p
2mk

B

T/~.
The ratio between the measured three-body parameter

and the van der Waals length is a
(1)
� /`vdW = -9.24 ±

0.7 (Wild et al., 2012). This value is very similar to the
reported values for 133Cs (Berninger et al., 2011; Krae-
mer et al., 2006) and 7Li (Gross et al., 2009, 2010, 2011).

5. 133Cs

The first experimental evidence of the Efimov e↵ect
was observed in an ultracold gas of 133Cs (Kraemer et al.,
2006) by tuning the Cs-Cs scattering length of through a
Feshbach resonance, and measuring the enhancement and
decreases of the three-body loss coe�cient for negative
and positive scattering lengths, respectively. At the same
time, this pioneering work readily showed the possibility
of using ultracold physics in order to explore universal
physics in few-body physics.(Esry and Greene, 2006)

B
res

(G) |a(1)
� |/`vdW ⌘�

7.56±0.17 8.63 ± 0.22 0.10±0.03
553.30±0.4 10.19 ± 0.57 0.12±0.01
554.71±0.80 9.48 ± 0.79 0.19±0.02
853.07±0.56 9.45 ± 0.28 0.08±0.01

Table III Experimentally determined three-body parameter
a� for di↵erent Feshbach taken from (Berninger et al., 2011).
The position of the Feshbach resonances employed are de-
noted by B

res

, the three-body parameter as a function of the
van der Waals length (`vdW = 101 a0) is reported, and finally
⌘� is a nonuniversal quantity that reflects decay into deeply
bound diatomic states (Wenz et al., 2009).

A few years after the observation of Efimov states in ul-
tracold systems, Berninger et al. (Berninger et al., 2011)
employed four di↵erent Feshbach resonances to study
variations of the three-body parameter in an ultracold

1 Usually C3 is defined in terms of the so-called three-body inter-
action parameter k⇤ (Braaten et al., 2011; Castin and Werner,
2011), which is related to the three-body parameter by the equa-

tion: a
(1)
� = (�1.56± 5)/k⇤. (Braaten and Hammer, 2006).
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K taken from (Roy et al., 2013). R⇤ represents the intrinsic
length scale and associated with it, the resonance strength
s
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. The value for the three-body parameter as a function of
the van der Waals length `vdW = 64.49 a0 is also reported, as
well as the initial temperature T , which implies a saturation
limit of the three-body recombination rate because the S-
matrix is unitary.
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�µ) (Chin et al., 2010), where
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represents the background scattering length, m is the
reduced mass and �µ is the change in the magnetic mo-
ment between the initial and final states. In such a sce-
nario was predicted that the Efimov physics would be
dominated by the intrinsic length associated with the

resonance R⇤, in particular, a(1)� = �12.90R⇤ (Gogolin
et al., 2008; Mora et al., 2011; Petrov, 2004). However,
the experimental work of (Roy et al., 2013) revealed a
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the three-body parameter |a(1)� |/`vdW ⇠ 10, which turns
out to be very similar to the experimental and theoretical
values for the case of broad 2-body resonances (Berninger
et al., 2011; Naidon et al., 2014a; Wang et al., 2012b),

i.e., |a(1)� |/`vdW = 9.5. This striking result implies that
the intrinsic length scale associated with a narrow reso-
nance apparently plays no role in the determination of
the three-body parameter. Thus, for systems with long-
range dominant van der Waals interactions, the three-
body parameter seems to be universal.

4. 85Rb

The study of Tan’s contact in an ultracold gas of 85Rb
has been realized by (Wild et al., 2012). In particular
the two-body and three-body contact were determined,
as well as the three-body recombination rate constant,
by varying the two-body scattering length in a sweep of
the magnetic field through a Feshbach resonance. The
two-body contact is an extensive thermodynamic magni-
tude proportional to the derivative of the internal en-
ergy of the ultracold gas with respect to the scatter-
ing length (Combescot et al., 2009; Schakel, 2010; Tan,
2008a,b,c; Werner et al., 2009), i.e, C2 / dE/da. The
three-body contact C3 is defined in terms of the deriva-
tive of the internal energy with respect to the three-body

parameter C3 / dE/da� (Braaten et al., 2011; Castin
and Werner, 2011). 1

The measurements of the three-body recombination
rate were performed in dilute, ultracold, non-condensed
clouds containing 1.5 ⇥ 105 atoms of 85Rb at a tem-
perature T =80 nK. Then the magnetic field was varied
through a Feshbach resonance in order to explore the re-
gion of negative scattering lengths. The obtained three-
body recombination rate was fitted to the expected form
for the Efimov three-body rate (Braaten and Hammer,

2006), obtaining a
(1)
� = -759 ± 6 a0. The utilized fitting

function is only valid at T = 0, and hence the fitting was
realized for a < 1/kthermal, where kthermal =

p
2mk
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The ratio between the measured three-body parameter

and the van der Waals length is a
(1)
� /`vdW = -9.24 ±

0.7 (Wild et al., 2012). This value is very similar to the
reported values for 133Cs (Berninger et al., 2011; Krae-
mer et al., 2006) and 7Li (Gross et al., 2009, 2010, 2011).

5. 133Cs

The first experimental evidence of the Efimov e↵ect
was observed in an ultracold gas of 133Cs (Kraemer et al.,
2006) by tuning the Cs-Cs scattering length of through a
Feshbach resonance, and measuring the enhancement and
decreases of the three-body loss coe�cient for negative
and positive scattering lengths, respectively. At the same
time, this pioneering work readily showed the possibility
of using ultracold physics in order to explore universal
physics in few-body physics.(Esry and Greene, 2006)
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a� for di↵erent Feshbach taken from (Berninger et al., 2011).
The position of the Feshbach resonances employed are de-
noted by B

res

, the three-body parameter as a function of the
van der Waals length (`vdW = 101 a0) is reported, and finally
⌘� is a nonuniversal quantity that reflects decay into deeply
bound diatomic states (Wenz et al., 2009).

A few years after the observation of Efimov states in ul-
tracold systems, Berninger et al. (Berninger et al., 2011)
employed four di↵erent Feshbach resonances to study
variations of the three-body parameter in an ultracold

1 Usually C3 is defined in terms of the so-called three-body inter-
action parameter k⇤ (Braaten et al., 2011; Castin and Werner,
2011), which is related to the three-body parameter by the equa-

tion: a
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� = (�1.56± 5)/k⇤. (Braaten and Hammer, 2006).

See review, Greene, Gianakeas and Perez-Rios, arXiv: 1704.02029
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the phase shift given by equation (2.41) into these formalisms 
[70–73]. This brings out a correction r Re

3/∝  to the Efimov 
attraction (2.33) [70–72]. One can use more elaborate expres-
sions describing the energy dependence of the phase shift over 
a wider range of energy [74, 75].

It would be tempting to think that such a procedure regu-
larises the Thomas collapse problem of the zero-range theory 
and sets the three-body parameter through the new length 
scale given by re [75]. It is indeed the case for a large and 
negative effective range, a situation that arises in the case 
of narrow Feshbach resonances [76]—see section  4.2.4.3. 
However, in general the procedure does not regularise the 
equations, and one still has to impose a regularisation of the 
equations  that introduces a three-body parameter. Such an 
approach with a fixed three-body parameter has not been quite 
successful in reproducing experimental data and theoretical 
calculations with finite-range interactions; an energy depend-
ence of the three-body parameter is needed to reproduce these 
results [74, 77, 78]. A likely reason is that equation (2.41) only 
accounts for the range corrections of the phase shift, i.e. the 
on-the-energy-shell scattering properties, which correspond 
to asymptotic properties of two-body systems, but not the off-
the-energy-shell properties which correspond to their short-
range correlations. In this respect, separable potentials [79] 
are useful tools to account for finite-range effects, since they 
can reproduce both on- and off-the-energy-shell finite-range 
effetcs, while keeping the simplicity of the zero-range theory 
[80, 81]—see appendix for details.

An alternative and more systematic approach to range cor-
rections is based on the effective field theory [82, 83]. Effective 
field theory [52] is the effective theory that one can write at 
low energy respecting the basic symmetries of the systems. In 
this framework, the ratio b a/| | of the range of interaction over 
the scattering length can be treated as an expansion parameter. 
The leading order in this expansion reproduces the zero-range 
theory [52]. Calculations to the next-to-leading order have been 
performed in [83–86] and show the necessity to introduce a sec-
ond three-body parameter to renormalise the equation at this 
order.

A more recent approach [87–89] based on numerical calcul-
ations with model potentials has provided an empirical way to 
reproduce range corrections to the zero-range theory. These 
works show that finite-range deviations from universal form-
ulas such as equation (2.39) can be accounted for to a good 
accuracy over a wide range of scattering length and energy 
by simply replacing the scattering length a by a length aB, 
and shifting the three-body parameter by a quantity inversely 
proportional to a. The length aB is defined as the value 1κ−  
that is the solution of itan i0( )δ κ = − , corresponding to the 
pole of the scattering amplitude f k k k iktan 0

1( ) ( / ( ) )δ= − − , 
provided that an analytic continuation to imaginary k is pos-

sible. For a  >  0, the energy 
ma

2

B
2

ħ−  therefore coincides with the 

two-body bound-state energy, while for a  <  0 it corresponds 
to the energy of a virtual bound state, since there is no physi-
cal bound state. This procedure has been used to fit theor etical 
results obtained with finite-range interactions, as well as 
experimental data obtained for lithium-7 [89, 90]. According 

to this procedure, the universal formula (2.39) for the trimer 
energy is modified as follows (changes are emphasised in red),

κ+ = +Γ π ξ∗ − | | ∆ | |E
ma

a
m

e e .n n n s s
2

B
2

2 2
2 0 0

ħ ħ ( / )( ) / ( )/ (2.42)

Equivalently, the finite-range energy curve can be mapped to 
the original Efimov curve by plotting the renormalised energy 
E En

n
n2( ) ( )′ λ=  (or wave number n

n
n( ) ( )′κ λ κ= ) as a function 

of the renormalised inverse scattering length a an
1

B
1′ λ=− −  

with the a-dependent renormalisation coefficient 
a1n n

1( /( ))λ κ= + Γ ∗
− . An example of such mapping will be 

shown in the case of helium-4 in section 2.1.7.1.
The replacement a aB→  is related to the two-body range 

correction given by equation (2.41). Indeed, according to the 
definition of aB and to equation (2.41), one has:

a
r r a

1
1 1 2e e

B

1( )/≈ − −−
 (2.43)

⎜ ⎟⎛
⎝

⎞
⎠≈ + + …

a
r
a

1
1

1
2

.e (2.44)

In contrast, the shift an/Γ  is a range correction to the three-
body parameter,

a
1 n/⎜ ⎟⎛

⎝
⎞
⎠κ κ κ= + Γ + …′∗ ∗

∗

that is likely associated with two- and three-body short-range 
correlations. The form of this shift was recently justified from 
effective-field theory [91], but the value of nΓ  has so far been 
determined only numerically for each value of n to reproduce 
finite-range calculations. These results suggest that, with the 
introduction of the parameters re and nΓ  characterising finite-
range corrections, the universality of Efimov physics may be 
extended beyond the window of validity of the zero-range 
theory.

2.1.3. Other interactions.
2.1.3.1. Coulomb interactions. Electrically charged particles 
are subjected to the Coulomb interaction. It is a long-range 
interaction, whose potential decays as 1/r, thus more slowly 
than 1/r3. For such interactions, there is no range beyond 
which the particles effectively cease to interact. Therefore, 
there is no Efimov physics associated with Coulomb interac-
tions themselves. However, particles interacting with short-
range interactions may also interact with additional Coulomb 
interactions due to their electric charge. Such is the case of 
protons or nuclei, which interact through the short-range 
nuclear forces as well as the repulsive Coulomb interaction. If 
the short-range interactions are resonant, there is an expected 
interplay between the 1/R2 Efimov attraction (2.33) and Cou-
lomb forces.

To our knowledge, this interplay has not been studied explic-
itly, due to the technical difficulties in solving the three-body 
problem with Coulomb interactions [92]. Nevertheless, some 
simple considerations can be made, as discussed by Vitaly 
Efimov in his original paper [1]. Since the Coulomb potential 
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Introduction.—Recently topological superconductors
have attracted great interest across many subfields in phys-
ics [1,2]. This is partially because vortices in topological
superconductors bind zero-energy Majorana fermions and
obey non-Abelian statistics, which can be of potential use
for fault-tolerance topological quantum computation [3,4].
A canonical example of such topological superconductors
is a p-wave paired state of spinless fermions in two
dimensions [5], which is believed to be realized in
Sr2RuO4 [6]. Previous mean-field studies revealed that a
topological quantum phase transition takes place across a
p-wave Feshbach resonance [7–9].

In this Letter, we study few-body physics of spinless
fermions in two dimensions right at the p-wave resonance.
We predict that three such fermions form an infinite tower of
bound states of orbital angular momentum ‘ ¼ "1 and their
binding energies obey a universal doubly exponential scaling

EðnÞ
3 / expð%2e3!n=4þ"Þ (1)

at large n. Here " is a nonuniversal constant defined modulo
3!=4. This novel phenomenon shall be termed a super
Efimov effect, because it resembles the Efimov effect in
which three spinless bosons in three dimensions right at an
s-wave resonance form an infinite tower of ‘ ¼ 0 bound
states whose binding energies obey the universal exponential

scaling EðnÞ
3 / e%2!n=s0 with s0 ' 1:00624 [10] (see Table I

for comparison).While the Efimov effect is possible in other
situations [11,12], it does not take place in two dimensions or
with p-wave interactions [12–14]. We also provide an indi-
cation that there are ‘ ¼ "2 four-body resonances associ-
ated with every three-body bound state at

EðnÞ
4 / expð%2e3!n=4þ"%0:188Þ; (2)

which also resembles the pair of four-body resonances in the
usual Efimov effect [15,16]. These universal few-body states

of resonantly interacting fermions in two dimensions should
be taken into account in future many-body studies beyond
the mean-field approximation.
Renormalization group analysis.—The above predic-

tions can be derived most conveniently by a renormaliza-
tion group (RG) analysis. The most general Lagrangian
density that includes up to marginal couplings consistent
with rotation and parity symmetries is

L ¼ c y
!
i@t þ

r2

2

"
c þ#y

a

!
i@t þ

r2

4
% "0

"
#a

þ g#y
ac ð%iraÞc þ gc yð%ir%aÞc y#a

þ v3c
y#y

a#ac þ v4#
y
a#

y
%a#%a#a

þ v0
4#

y
a#

y
a#a#a: (3)

Here and below, @ ¼ m ¼ 1, r" ( rx " iry, and sums
over repeated indices a ¼ " are assumed. c and#" fields
correspond to a spinless fermion and ‘ ¼ "1 composite
boson, respectively. The p-wave resonance is defined by
the divergence of the two-fermion scattering amplitude at
zero energy, which is achieved by tuning the bare detuning
parameter at "0 ¼ g2!2=ð2!Þ with ! being a momentum
cutoff.

TABLE I. Comparison of the Efimov effect versus the super
Efimov effect.

Efimov effect Super Efimov effect

Three bosons Three fermions
Three dimensions Two dimensions
s-wave resonance p-wave resonance
‘ ¼ 0 ‘ ¼ "1
Exponential scaling Doubly exponential scaling
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Our calculation indicates that when ρ/r0 is large, the three-
body system is subject to an emergent effective potential

Ueff(ρ) = − 1
4ρ2

−
s2

0 + 1/4

ρ2 ln2(ρ/r0)
. (10)

Given such a potential, one can use the WKB approximation
(or other methods) to show that the binding energies of
shallow bound states have the super Efimov form En =
E∗ exp(−2eπn/s0+θ ). Our numerical results of s0 agree well
with the universal scaling factor 4/3 predicted by Ref. [25].
Thus we show that the universal super Efimov states originate
from the universal effective potential Eq. (10).

The above conclusion is based on the adiabatic approx-
imation by neglecting interchannel couplings [cf. Eq. (5)].
For the Lennard-Jones, Gaussian, and Pöschl-Teller two-body
model potentials, we find numerically that the intercouplings
between the super Efimov channel µ = 0 and other channels
ν ̸= 0 have the asymptotic behaviors P0ν ∼ 1/ρ ln2(ρ) and
Q0ν ∼ 1/ρ2 ln2(ρ) when ρ is large. The effects of these
nonzero interchannel couplings on the super Efimov states
can be evaluated perturbatively in the following way. First, we
solve Eq. (4) at zero order by neglecting all the interchannel
couplings. The µ = 0 channel would produce the super Efimov
bound-state solutions f

(0)
0 (ρ) with negative eigenenergies E

while apart from any accidental coincidences, in any other
channels ν ̸= 0 there is only a trivial solution f (0)

ν (ρ) = 0
for the same energies E. Next, we substitute f

(0)
0 (ρ) into

Eq. (4) and solve f (1)
ν (ρ) for ν ̸= 0 to the first order of

the interchannel couplings. In the regime r0 ≪ ρ ≪ 1/|E|,
f

(0)
0 (ρ) ∼

√
ρ ln(ρ/r0) cos{s0 ln[ln(ρ/r0)] + ϕ}, with ϕ a

phase shift [28], which indicates f (1)
ν (ρ) ∼ f

(0)
0 (ρ)/ ln2(ρ/r0).

Thus in Eq. (4) the off-diagonal terms are expected to
be [2P0ν(d/dρ) + Q0ν]f (1)

ν (ρ) ∼ f
(0)
0 /ρ2 ln4(ρ/r0), negligi-

ble compared with the diagonal term Ueff(ρ)f (0)
0 (ρ); the

adiabatic approximation is justified in the regime ρ → ∞.
Three-body parameters. In the case of Efimov states, the

three-body parameter Ẽ∗ is originally believed to be not
universal and to be determined by short-range interaction de-
tails [2]. Surprisingly, recent experiments of ultracold atomic
gases found Ẽ∗ rather universal (in van der Waals units) [19].
Subsequent theoretical calculations [20–24] inspired by this
new discovery soon confirmed that when the long-range tail
of the two-body interaction is dominated by the van der
Waals form V (r) → −C6/r6, Ẽ∗ is universally determined
by the van der Waals length lvdW ≡ C

1/4
6 /2 or equivalently

the van der Waals energy EvdW ≡ −1/l2
vdW. This universality

of Ẽ∗ is attributed to the suppressed probability of finding
two particles at short distances where V (r) shows a deep
attractive well [20]. It is natural to ask the question whether the
three-body parameters for super Efimov states E∗ and θ are
also universal if the two-body interaction has the long-range
tail −C6/r6.

We use two-body model potentials V n
k (r) =

−C6/r6[1 − (βn/r)k] to study the three-body parameters
numerically. The short-range parameter βn is tuned such
that there are n p-wave two-body bound states including the
shallowest one at threshold. These two-body model potentials
have the same long-range van der Waals tail, but very different
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FIG. 2. (Color online) Universal effective potential Ueff for dif-
ferent two-body model potentials V n

k , with sharp avoid crossings
manually diabatized in some cases to improve visualization. An
example of the manual diabatization is shown in the inset for the
model potential V 2

6 . The sharp feature arising from an accidental
crossing between two channels represented by the red dashed-dotted
and the black dashed curves is manually eliminated to give the smooth
green solid curve.

short-range interactions determined by βn and k. The first
evidence of universality is the effective potential Ueff at short
range, as shown in Fig. 2, where a universal repulsive core
rises up at about ρ ≈ 2.2lvdW; it seems that the short-range
details of these different two-body model potentials have little
effect on those of the three-body effective potential Ueff . In
plotting Ueff in Fig. 2, we have manually diabatized the curves
to improve visualization. One example is shown in the inset
of Fig. 2, where a sharp feature arising from an accidental
crossing between the super Efimov channel and another
channel is manually eliminated. These kinds of sharp features
of Ueff at small ρ shall not be important for understanding
low-energy three-body observables.

Applying the numerical treatment similar to Ref. [35], we
calculate the three-body super Efimov ground-state energies
Eg for different V n

k (r). When the model potentials V n
k (r) can

support only one two-body bound state at threshold (n = 1),
the super Efimov channel is the lowest three-body channel;
the super Efimov states are true bound states and we obtain
their eigenenergies by diagonalizing the Hamiltonian directly.
When the model potentials support multiple two-body bound
states (n > 1), deeper three-body channels (atom-dimer chan-
nels) exist, and the super Efimov states become quasibound
states. It is known that when there is a quasibound state
buried in the continua, the scattering amplitude shows a Fano
resonance due to the interference between the continuum states
and the quasibound state [39]. In this case, we calculate the
scattering cross sections for the deeper atom-dimer channels
at energies close to those of the super Efimov states, and
locate resonances that can be fitted by a Fano line shape. The
resonance positions are interpreted as the super Efimov state
energies, and the widths of the resonances give the rates of the
super Efimov states decaying into atom-dimer states.
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R cosρ α= (2.23)

where R is the hyper-radius satisfying

R r r r r
2
3

2 2 2
12
2

23
2

31
2( )ρ= + = + + (2.24)

and α is the Delves hyper-angle. In these coordinates, one 
obtains the equation:

R R R R
k R

1 1
, 0

2

2 2

2

2
2

0( )
⎛
⎝⎜

⎞
⎠⎟α
χ α− ∂

∂
− ∂

∂
− ∂

∂
− = 

(2.25)
with the boundary condition for 0→α :

( )( )
→

( )⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠α

χ α χ
π

χ∂
∂

+ = −
α

R R R
a

R,
8
3

,
3

, 0 .0
0

0 0 (2.26)

The problem then becomes separable in R and α, for the case 
→ ± ∞a  corresponding to the unitary limit. Indeed, in this 

limit the right-hand side of equation (2.26) vanishes and one 
is left with a boundary condition at 0α =  that is independent 
of R. On the other hand, the other boundary condition (2.20) 
corresponds to R, 00 2

( )χ =π , which is a boundary condition at 

2
α = π that is also independent of R. One can thus find a solu-
tion of equation (2.25) in the form:

R F R,0( ) ( ) ( )χ α φ α= (2.27)

where φ satisfies sn
d

d
22

2 ( ) ( )φ α φ α− =
α

 with the boundary 

conditions at 0α =  and 2/α π= . This gives the following 
solutions:

ssin
2n n( ) ( )⎜ ⎟⎛

⎝
⎞
⎠φ α π α= − (2.28)

where sn is a solution of the equation:

π π− + =s s scos
2

8
3

sin
6

0.n n n( ) ( ) (2.29)

Each solution labelled by n constitutes a channel for the 
hyper-radial motion. That is to say, for each solution nφ  there 
is a corre sponding hyper-radial function Fn(R) such that 
F Rn n( ) ( )φ α  is a solution of equation  (2.25). It satisfies the 
equation:

R R R
s
R

k F R
1

0n
n

2

2

2

2
2 ( )

⎛
⎝⎜

⎞
⎠⎟− ∂

∂
− ∂

∂
+ − = (2.30)

which can be written as a one-dimensional Schrödinger 
equation:

R
V R k R F R 0n n

2

2
2( ) ( )

⎛
⎝⎜

⎞
⎠⎟− ∂

∂
+ − = (2.31)

with the hyper-radial potential,

V R
s

R
1 4

n
n
2

2
( ) /

=
−

 (2.32)

All solutions of equation (2.29) are real, except one denoted 
as ≈ ±s i1.006240  which is purely imaginary. As a result, the 
effective R 2∝ −  potential in equation  (2.30) is attractive for 

the channel n  =  0. This is in contrast with the non-interacting 
three-body problem, where the boundary condition  (2.26) is 
replaced by ( ) ⟶

→
χ αR, 0

r
0

0
, leading to equation  (2.28) with 

eigenvalues sn  =  2(n  +  1) that are all real. In this case, the 
effective R 2∝ −  potential equation (2.32) is repulsive for all n. 
This repulsion is interpreted as a generalised centrifugal bar-
rier due to the free motion of deformation of the three-body 
system. In the interacting problem at unitarity, however, the 
channel n  =  0 leads to an effective three-body attraction

( ) /
= −

| | +
V R

s

R

1 4
.0

0
2

2 
(2.33)

This unexpected attraction is the basis for Efimov physics and 
is referred to as the Efimov attraction. It can be interpreted as 
the result of a mediated attraction between two particles by 
exchange of the third particle.

The existence of this attraction shows that the zero-range 
theory for three bosons is not well defined. Indeed, equa-
tion (2.30) for n  =  0 is a Schrödinger equation for an attractive 
1/R2 potential, which is scale invariant since a R1 2/∝  potential 
scales as the kinetic energy Rd d2 2/∝  under a scaling transfor-
mation R R→ λ . It is known that such an equation admits a solu-
tion at any energy, and its spectrum is therefore not bounded 
from below [55, 56]. Indeed, if the equation admits a solution 
at energy E  <  0, making the scaling transformation R R→ λ  
with an arbitrary scaling factor λ gives another solution at 
energy E 02λ < . This means that under the Efimov attraction 
the three-boson system collapses on itself, a phenom enon 
discovered long ago by Thomas [18] and referred to as the 
‘Thomas collapse’ or ‘fall of the particles to the centre’. The 
same problem was found [57] in the for mulation of the zero-
range theory for three particles by an integral equation, known 
as the Skorniakov and Ter-Martorisian equation [19]. This is of 
course a shortcoming of the zero-range theory, since the finite-
range effects of the interaction can no longer be neglected 
when the distance between the three bosons becomes compa-
rable with the finite range of interactions6.

A practical solution to this problem, originally suggested 
by Gribov and demonstrated by Danilov [58], consists in 
imposing a condition on the solutions of the three-body equa-
tion, or a momentum cut-off on the equation [59], in order to 
reproduce a known three-body observable, such as a three-
body bound state energy or particle-dimer scattering prop-
erty. For instance, fixing the triton energy to the observed 
value, and solving the three-body equation with that condi-
tion enables the prediction of the neutron-deuteron scattering 
length [60].

In Vitaly Efimov’s formulation of the three-body prob-
lem in terms of equation  (2.30), a similar procedure can be 
achieved by imposing a boundary condition below some 
arbitrarily small hyper-radius R0. Thus, in addition to the 
Bethe–Peierls two-body boundary condition (2.7), the three-
body problem in the zero-range theory requires an extra three-
body boundary condition. This boundary condition can be 

6 Throughout this article and much of the cited literature, the expression 
‘finite range’ means a range that is not zero.
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Bose Polaron Problem 

Figs. 3(b) and 4(b) for several typical values of 1=ðkFasÞ
across resonance.
In Fig. 3, the spectrum shows only attractive and

repulsive polaron branches without any signature of
Efimov physics. It shows that, at least in the temperature
regime we are considering, the Efimov signature is not
visible if lt ≫ d. As increasing 1=ðkFasÞ, the spectrum
starts from a well-defined quasiparticle peak centered
at negative ω [attractive polaron, Fig. 3(b1)], which
gradually becomes broader [Fig. 3(b2)] to exhibit a
two-peak structure near resonance [Fig. 3(b3)–3(b5)],
and finally evolves to a single peak centered at positive
ω [repulsive polaron, Fig. 3(b6)]. All these features
are consistent with current experimental observa-
tions [58,59].
Contrarily, in Fig. 4, besides the attractive and repulsive

branches, there are two visible Efimov branches, which
are associated with the first two Efimov trimers in vacuum
emerging at að1;2Þ− < 0 [dotted lines in Fig. 4(a)].
Interestingly, these Efimov branches can be very close or
even level crossing with the attractive branch of polarons,
and the interbranch hybridization leads to a much broad-
ened spectrum near as ∼ að1Þ− as well as an enhanced signal
of the second Efimov branch near resonance [68].
In this case, starting from a single attractive polaron

branch [Fig. 4(b1)], with the increase of 1=ðkFasÞ, one can

see the first Efimov branch appears around as ∼ að1Þ− with a
narrow peak near zero frequency [marked by the arrow in
Fig. 4(b2)] and it hybridizes with the attractive polaron
branch. This Efimov branch quickly merges into the
attractive polaron branch away from their (avoided) level
crossing [Fig. 4(b3)]. The second Efimov branch shows up
as a nearby resonance [arrow in Fig. 4(b4)], and its signal can
become more pronounced when its level moves closer to the
attractive branch [Fig. 4(b5)]. Finally, it becomes a single
branch at positive frequency [repulsive polaron, Fig. 4(b6)].
Note that the Efimov branches shown in Fig. 4 are only

visible after including the three-body contributions (Σð2Þ).
In contrast, we have checked that the inclusion of Σð2Þ in
Fig. 3 does not make qualitative change to the spectrum.
This confirms the distinct roles of the three-body effect
played in the two systems, as illustrated in Fig. 1.
Another notable difference between Fig. 3 and Fig. 4 is

that, in the latter, the attractive and repulsive branches have
much narrower relative spectral width, defined by the ratio
of the absolute width to the mean location of the spectral
peak. Near resonance, these branches are well separated
and disconnected, unlike those in Fig. 3. This suggests that,
for given λT=d, the Bose polaron quasiparticle is more well
defined for larger mass ratio η.
Discussion and outlook.—In this Letter, we have

revealed the signature of Efimov physics in the spectral
response of the Bose polarons with large mass imbalance.
The setting, here, is different from previous ones exploring

FIG. 4. Same plot of Aðk ¼ 0;ωÞ as in Fig. 3 but for 6Li-133Cs
(i–b) system. From (b1) to (b6), 1=ðkFasÞ¼−3, −2.5, −2,
−0.2, 0, 2. The additional dotted lines in (a) show the energies
of the first and the second Efimov trimers from three-body
calculations. The gray arrows in (b2),(b4),(b5) mark the spectral
peaks of the Efimov branches.

FIG. 3. Spectral function Aðk ¼ 0;ωÞ (in units of 1=EF) for
39K-39K (i–b) system. (a) shows the contour plot of Aðk ¼ 0;ωÞ
in terms of 1=ðkFasÞ and ω=EF. For comparison, we show the
two-body binding energy (black dashed-dotted line) and the mean-
field energies of attractive and repulsive branches (white dashed
line). (b) shows slices of Aðk ¼ 0;ωÞ for 1=ðkFasÞ ¼ −2;−0.2, 0,
0.2, 0.5, 2 [from (b1) to (b6)], as labeled by the arrows in (a) with
according colors. Here, zb ¼ 0.1.
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Here, Δ¼ ϵp1
þϵp2

−P2
t =ð2MÞ, with Pt¼kþp1þp2 and

M ¼ 2mb þmi respectively, the total momentum and the
total mass of the three-body system; p0

1;2 ¼ p1;2 −mbPt=M
and mAD ¼ mbðmb þmiÞ=M are, respectively, the relative
momenta and the reduced mass for atom-dimer scattering.
T2ðEÞ is the two-body scattering matrix with scattering
energy E

T2ðEÞ ¼
2π
mr

1

a−1s −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2mrE

p ; ð5Þ

where mr ¼ mbmi=ðmb þmiÞ is the reduced mass.
T3ðp1;p2; EÞ is the atom-dimer scattering matrix at energy
E, with p1, p2, respectively, the relative momenta of the
incoming and outgoing atom-dimer states in the center-of-
mass frame, and

T3ðp1;p2;EÞ¼
1

E−ϵp1
−ϵp2

−ðp1þp2Þ2=ð2miÞ

þ
Z

d3q
ð2πÞ3

T2ðE− q2

2mAD
Þ

E−ϵp1
−ϵq−

ðp1þqÞ2
2mi

T3ðq;p2;EÞ:

ð6Þ

To this end, we have obtained the impurity self-energy,
Σ ¼ Σð1Þ þ Σð2Þ, up to the order of z2b. The spectral function
can be computed from the propagator of the impurity,
Giðk;ωÞ ¼ ½ωþ iδ − k2=ð2miÞ − Σðk;ωþ iδÞ&−1, as

Aðk;ωÞ ¼ −
1

π
Im(Giðk;ωÞ): ð7Þ

As a benchmark for our calculation, we have obtained the
trimer energy EðnÞ

T at resonance from the pole of T3 and

determined the scattering lengthaðnÞ− for the appearance of the
nth trimer state in the as < 0 side. We have verified that both
aðnÞ− andEðnÞ

T well follow the universal scaling law for large n,
i.e., aðnÞ− =aðnþ1Þ

− ¼ λ, EðnÞ
T =Eðnþ1Þ

T ¼ λ2, with λ the scaling
factor [1,2].We have also obtainedb3 with the samediagrams
for Σð2Þ, and the result well reproduces the known analytical
behaviors in both unitary and deep molecular regimes [67].
Results.—In Table I, we compare η, λ, αðnÞ ≡ 1=ðkFaðnÞ− Þ,

and ϵðnÞ ≡ EðnÞ
T =EF for three different impurity-boson

(i–b) systems, where kF ¼ ð6π2nbÞ1=3; EF ¼ k2F=ð2mbÞ,
and we take a typical density nb ¼ 2 × 1014 cm−3 for all
boson systems. The three-body cutoff is chosen such that
the obtained að1Þ− for different systems matches the values in
Refs. [18,58,61]. Since the size of the trimer at resonance
follows lt=d ∝ ϵ−1=2, the large (or small) ϵ corresponds to
lt ≪ d (or lt ≫ d). From the table, we can see that the first
two systems, 39K-39K (i–b) and 40K-87Rb (i-b), both belong
to case (a) in Fig. 1, where the trimers appear only
sufficiently close to resonance (jαðnÞj ≪ 1) with their sizes
lt ≫ d, while the third system, 6Li-133Cs (i-b), belongs to
case (b), where the first and the second trimers appear with
jαðnÞj ∼ 1, and as varying 1=as, these trimers can have
sizes lt ∼ d.
Below, we present the spectral results for 39K-39K

(i–b) system (Fig. 3) and 6Li-133Cs (i–b) system (Fig. 4)
as the representatives of two cases in Fig. 1. Since the
injection spectroscopy used in the experiments [54–59]
can be described by Aðk ¼ 0;ωÞ, taking zb ¼ 0.1 for both
systems (giving the thermal wavelength λT ¼ 0.47d), we
show the contour plots of Að0;ωÞ in terms of 1=ðkFasÞ
and ω=EF in Figs. 3(a) and 4(a), and slices of Að0;ωÞ in

TABLE I. Mass ratio (η≡mb=mi), Efimov scaling factor from zero-range theory (λ), the interaction parameter for the appearance of
the nth Efimov trimers [αðnÞ ≡ 1=ðkFaðnÞ− Þ], and the nth trimer energy at resonance (ϵðnÞ ≡ EðnÞ

T =EF) for three systems with different
impurity-boson (i–b) combinations. The values of að1Þ− are from Refs. [18,58,61]. For the Li-Cs system, the relatively large derivation of
the scaling factor for the two lowest trimer states from λ is due to the very deep lowest trimer (with Eð1Þ

T of the order of the cutoff energy),
in which the finite range effect becomes non-negligible.

Impurity-boson η λ αð1Þ αð2Þ αð3Þ ϵð1Þ ϵð2Þ ϵð3Þ

39K-39K [58] 1 1986 −2.76 × 10−3 −1.39 × 10−6 −6.99 × 10−10 1.51 × 10−4 3.84 × 10−11 9.73 × 10−18
40K-87Rb [59] 2.2 123 −2.76 × 10−2 −2.23 × 10−4 −1.82 × 10−6 1.40 × 10−2 9.32 × 10−7 6.19 × 10−11
6Li-133Cs [18,19] 22.2 4.87 −2.56 −0.40 −7.87 × 10−2 185.9 6.09 0.25
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energy E
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where mr ¼ mbmi=ðmb þmiÞ is the reduced mass.
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E, with p1, p2, respectively, the relative momenta of the
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To this end, we have obtained the impurity self-energy,
Σ ¼ Σð1Þ þ Σð2Þ, up to the order of z2b. The spectral function
can be computed from the propagator of the impurity,
Giðk;ωÞ ¼ ½ωþ iδ − k2=ð2miÞ − Σðk;ωþ iδÞ&−1, as

Aðk;ωÞ ¼ −
1

π
Im(Giðk;ωÞ): ð7Þ

As a benchmark for our calculation, we have obtained the
trimer energy EðnÞ

T at resonance from the pole of T3 and

determined the scattering lengthaðnÞ− for the appearance of the
nth trimer state in the as < 0 side. We have verified that both
aðnÞ− andEðnÞ

T well follow the universal scaling law for large n,
i.e., aðnÞ− =aðnþ1Þ

− ¼ λ, EðnÞ
T =Eðnþ1Þ

T ¼ λ2, with λ the scaling
factor [1,2].We have also obtainedb3 with the samediagrams
for Σð2Þ, and the result well reproduces the known analytical
behaviors in both unitary and deep molecular regimes [67].
Results.—In Table I, we compare η, λ, αðnÞ ≡ 1=ðkFaðnÞ− Þ,

and ϵðnÞ ≡ EðnÞ
T =EF for three different impurity-boson

(i–b) systems, where kF ¼ ð6π2nbÞ1=3; EF ¼ k2F=ð2mbÞ,
and we take a typical density nb ¼ 2 × 1014 cm−3 for all
boson systems. The three-body cutoff is chosen such that
the obtained að1Þ− for different systems matches the values in
Refs. [18,58,61]. Since the size of the trimer at resonance
follows lt=d ∝ ϵ−1=2, the large (or small) ϵ corresponds to
lt ≪ d (or lt ≫ d). From the table, we can see that the first
two systems, 39K-39K (i–b) and 40K-87Rb (i-b), both belong
to case (a) in Fig. 1, where the trimers appear only
sufficiently close to resonance (jαðnÞj ≪ 1) with their sizes
lt ≫ d, while the third system, 6Li-133Cs (i-b), belongs to
case (b), where the first and the second trimers appear with
jαðnÞj ∼ 1, and as varying 1=as, these trimers can have
sizes lt ∼ d.
Below, we present the spectral results for 39K-39K

(i–b) system (Fig. 3) and 6Li-133Cs (i–b) system (Fig. 4)
as the representatives of two cases in Fig. 1. Since the
injection spectroscopy used in the experiments [54–59]
can be described by Aðk ¼ 0;ωÞ, taking zb ¼ 0.1 for both
systems (giving the thermal wavelength λT ¼ 0.47d), we
show the contour plots of Að0;ωÞ in terms of 1=ðkFasÞ
and ω=EF in Figs. 3(a) and 4(a), and slices of Að0;ωÞ in

TABLE I. Mass ratio (η≡mb=mi), Efimov scaling factor from zero-range theory (λ), the interaction parameter for the appearance of
the nth Efimov trimers [αðnÞ ≡ 1=ðkFaðnÞ− Þ], and the nth trimer energy at resonance (ϵðnÞ ≡ EðnÞ

T =EF) for three systems with different
impurity-boson (i–b) combinations. The values of að1Þ− are from Refs. [18,58,61]. For the Li-Cs system, the relatively large derivation of
the scaling factor for the two lowest trimer states from λ is due to the very deep lowest trimer (with Eð1Þ

T of the order of the cutoff energy),
in which the finite range effect becomes non-negligible.

Impurity-boson η λ αð1Þ αð2Þ αð3Þ ϵð1Þ ϵð2Þ ϵð3Þ

39K-39K [58] 1 1986 −2.76 × 10−3 −1.39 × 10−6 −6.99 × 10−10 1.51 × 10−4 3.84 × 10−11 9.73 × 10−18
40K-87Rb [59] 2.2 123 −2.76 × 10−2 −2.23 × 10−4 −1.82 × 10−6 1.40 × 10−2 9.32 × 10−7 6.19 × 10−11
6Li-133Cs [18,19] 22.2 4.87 −2.56 −0.40 −7.87 × 10−2 185.9 6.09 0.25
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Here, Δ¼ ϵp1
þϵp2

−P2
t =ð2MÞ, with Pt¼kþp1þp2 and

M ¼ 2mb þmi respectively, the total momentum and the
total mass of the three-body system; p0

1;2 ¼ p1;2 −mbPt=M
and mAD ¼ mbðmb þmiÞ=M are, respectively, the relative
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T2ðEÞ is the two-body scattering matrix with scattering
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THREE-BODY PHYSICS

Observation of the Efimov state of the
helium trimer
Maksim Kunitski,1* Stefan Zeller,1 Jörg Voigtsberger,1 Anton Kalinin,1

Lothar Ph. H. Schmidt,1 Markus Schöffler,1 Achim Czasch,1 Wieland Schöllkopf,2

Robert E. Grisenti,1,3 Till Jahnke,1 Dörte Blume,4 Reinhard Dörner1*

Quantum theory dictates that upon weakening the two-body interaction in a three-body
system, an infinite number of three-body bound states of a huge spatial extent emerge
just before these three-body states become unbound. Three helium (He) atoms have been
predicted to form a molecular system that manifests this peculiarity under natural
conditions without artificial tuning of the attraction between particles by an external
field. Here we report experimental observation of this long-predicted but experimentally
elusive Efimov state of 4He3 by means of Coulomb explosion imaging. We show spatial
images of an Efimov state, confirming the predicted size and a typical structure where
two atoms are close to each other while the third is far away.

E
ver since the early days of celestial mechan-
ics, the three-body problem has posed a
major challenge to physicists. In the early
20th century, the failure to find a stable so-
lution for the classical helium (He) atom

(two electrons and a nucleus) heralded the demise
of Niels Bohr's program of semiclassical atomic
physics (1). Quantum mechanics then added yet
another surprising twist to the three-body prob-
lem, when in 1970 Vitaly Efimov predicted the
appearance of an infinite series of stable three-
body states of enormous spatial extents (2). These
Efimov states are predicted to exist for short-
range interactions such as the van derWaals force
between atoms or the strong force between nu-
cleons. When the potential becomes so shallow
that the last two-body bound state is on the verge
of becoming unbound or is unbound, then three
particles stick together to form Efimov states.
This three-body behavior does not depend on the
details of the underlying two-body interactions.
Thismakes the Efimov effect a universal phenom-
enon, with important applications in particle, nu-
clear (3, 4), atomic (4), condensed-matter (5), and
biological physics (6).

Figure 1 summarizes two facets of Efimov’s
prediction: the energy spectrum and the struc-
ture of an Efimov state. Figure 1A shows how the
two- and three-body binding energies (the bind-
ing energy of an atomic cluster is defined as the
energy needed to separate all constituents of the
cluster to infinite distances) change as the depth
of the two-body potential is increased. As indi-
cated by the arrow above Fig. 1A, the depth of the
two-body potential increases along the horizontal
axis. As the depth increases, the s-wave scatter-
ing length a changes from negative values to
infinitely large values to positive values. Negative
a values correspond to the domain where shal-
low two-body bound states do not exist. For posi-
tive a, a shallow two-body bound state, the dimer
(blue solid line in Fig. 1A), exists. Bound three-
body states (called trimers) exist in thegreen-shaded
area. The extremely weakly bound three-body
states close to threshold (solid red line labeled
“1st ES” and the dashed black line labeled “2nd
ES”) are Efimov states, which have been predicted
to possess remarkable characteristics that are in-
tricately related to the discrete scale invariance
of the underlying three-body Hamiltonian. Key
characteristics of Efimov states are their unusual
extent and structure. Figure 1B shows the calcu-
lated structure of the state labeled 1st ES for
sign(a)|a|–1/2 = 0; i.e., for the ideal and universal
case where the two-body scattering length is in-
finitely large and the dimer binding energy is
equal to zero. For comparison, the size and shape
of the ground state trimer (labeled “GS” in Fig. 1A)
are depicted in Fig. 1C. The hypothetical ideal
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Figure 1 

 

Fig. 1.  Characterization of high quality ZrTe5 crystal. (A) HAADF STEM image 
of a typical ZrTe5 sample. Scale bar represents 10 nm. Inset is the enlarged image 
showing atomic resolution with a scale bar of 2 nm. The deduced lattice constants of a 
= 0.398 nm and b = 1.450 nm are well consistent with the parameters of 
stoichiometric ZrTe5. (B) RT characteristic of ZrTe5. Inset shows the schematic for 
electrical transport measurements.  
  

Magnetoresistance  
measurement
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Figure 3 

 

Fig. 3. Reproducible MR oscillations in ZrTe5.  (A) MR behavior of s6 vs. B at 
low temperatures in a static perpendicular magnetic field. (B) Second derivative of the 
MR data of s6 vs. the perpendicular component of magnetic field as the angle 
between the magnetic field and the current is varied. The 0º curve is the second 
derivative result when s6 is under a perpendicular magnetic field. (C) MR behavior of 
s6 in an ultrahigh magnetic field up to 58 T at relatively low temperatures. Inset 
shows the second derivation of MR data at 4.2 K in the small field regime. (D) MR 
behavior of s6 at relatively high temperatures. The oscillations are still visible at 100 
K while disappear at temperatures above 150 K. (E) MR oscillations in s6 after 
subtracting a smooth background from the measured raw data. (F) MR oscillations in 
s7 at 4.2 K vs. the perpendicular component of magnetic field.  

13 
 

 

Figure 4 

 
 

Fig. 4. DSI and fermionic Efimov states in ultra-quantum ZrTe5. (A) Linear 
dependence on n of the logarithmic Bn for MR oscillations in s6. (B) FFT results for 
MR data in the form of ∆R vs. log(B/B’). A sharp peak at F=1.89 is obtained with a 
FWHM range [1.66, 2.77] at 4.2 K, indicating a � range of [2.30, 4.00] 
(��Bn/Bn+1���The log-periodic property of the MR oscillations revealed in (A) and (B) 
clearly signals the appearance of DSI. (C) Schematic of the fermionic Efimov bound 
states (light yellow balls) in ZrTe5 crystals. The red (blue) ball indicates the heavy 
electron (light hole) and the purple curve represents the Coulomb attraction between 
the hole and the electron.  
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Generalized Definition of Efimov Effect 

Phenomenon that has discrete scaling symmetry with 
universal scaling factor



Generalized Definition of Efimov Effect 

Phenomenon that has discrete scaling symmetry with 
universal scaling factor

Whether such effect exists beyond few-body context ?
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Direct Observation of the Efimovian Expansion in a Scale Invariant Fermi Gas

Shujin Deng,1, ⇤ Zhe-Yu Shi,2, ⇤ Pengpeng Diao,1 Qianli Yu,1 Hui Zhai,2 Ran Qi,3, † and Haibin Wu1, ‡
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Scale invariance emerges and plays an important role in strongly correlated many-body systems
such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry
also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both
theoretical predication and experimental observation of a novel type expansion dynamics of a scale
invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the
inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits
a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling
law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This
is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the
time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling
symmetry.

Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(
p

�t) (� is a coe�cient and t is the time), as shown
in Fig. 1(a), how does the gas expand? Naively, by di-
mension analysis, one would expect that the cloud size
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FIG. 1: (a) The setup of the Efimovian expansion: a scale
invariant ultracold gas expands in a harmonic trap whose fre-
quency decreases as 1/(

p
�t). (b) The predication of the Efi-

movian expansion: the cloud size as a function of time t obeys
a log-periodic function and exhibits a series of plateaus. The
location of the plateaus obeys a geometric scaling law which
is a concequence of the discrete scaling symmetry.

R just increases as
p

t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(

p
�t) is so

special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(

p
�t), it is
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Scale invariance emerges and plays an important role in strongly correlated many-body systems
such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry
also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both
theoretical predication and experimental observation of a novel type expansion dynamics of a scale
invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the
inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits
a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling
law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This
is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the
time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling
symmetry.

Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
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t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
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out the insight that why ! decreases as 1/(
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special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
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such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry
also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both
theoretical predication and experimental observation of a novel type expansion dynamics of a scale
invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the
inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits
a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling
law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This
is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the
time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling
symmetry.
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when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(
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movian expansion: the cloud size as a function of time t obeys
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location of the plateaus obeys a geometric scaling law which
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t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(
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�t) is so

special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(
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Scale invariance emerges and plays an important role in strongly correlated many-body systems
such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry
also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both
theoretical predication and experimental observation of a novel type expansion dynamics of a scale
invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the
inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits
a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling
law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This
is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the
time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling
symmetry.

Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(
p

�t) (� is a coe�cient and t is the time), as shown
in Fig. 1(a), how does the gas expand? Naively, by di-
mension analysis, one would expect that the cloud size
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FIG. 1: (a) The setup of the Efimovian expansion: a scale
invariant ultracold gas expands in a harmonic trap whose fre-
quency decreases as 1/(

p
�t). (b) The predication of the Efi-

movian expansion: the cloud size as a function of time t obeys
a log-periodic function and exhibits a series of plateaus. The
location of the plateaus obeys a geometric scaling law which
is a concequence of the discrete scaling symmetry.

R just increases as
p

t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(

p
�t) is so

special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(

p
�t), it is
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Scale invariance emerges and plays an important role in strongly correlated many-body systems
such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry
also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both
theoretical predication and experimental observation of a novel type expansion dynamics of a scale
invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the
inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits
a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling
law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This
is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the
time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling
symmetry.

Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(
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�t) (� is a coe�cient and t is the time), as shown
in Fig. 1(a), how does the gas expand? Naively, by di-
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FIG. 1: (a) The setup of the Efimovian expansion: a scale
invariant ultracold gas expands in a harmonic trap whose fre-
quency decreases as 1/(
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�t). (b) The predication of the Efi-

movian expansion: the cloud size as a function of time t obeys
a log-periodic function and exhibits a series of plateaus. The
location of the plateaus obeys a geometric scaling law which
is a concequence of the discrete scaling symmetry.

R just increases as
p

t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(
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special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(
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Since this is a scale invariant equation, we may use a power law ansatz x(t) = t
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Then the general solution of equation (2) should be the linear combination of these three functions and it can be
written as
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If � > 4. The quadratic equation (8) has two real solutions ↵ = 1
2 ± ⌘

2 with ⌘ = 2
p
1/4� 1/�. Then x1 and x2

may be choosed to be
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1
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⌘
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⌘
2
. (12)

Then the general solution of equation (2) is
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. (13)

If � = 4. There is only one double root ↵ = 1
2 . Then x1 and x2 are

x1(t) =
p
t, x2(t) =

p
t ln

t
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. (14)

And the general solution of equation (2) is
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Scale invariance emerges and plays an important role in strongly correlated many-body systems
such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry
also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both
theoretical predication and experimental observation of a novel type expansion dynamics of a scale
invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the
inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits
a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling
law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This
is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the
time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling
symmetry.

Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(
p

�t) (� is a coe�cient and t is the time), as shown
in Fig. 1(a), how does the gas expand? Naively, by di-
mension analysis, one would expect that the cloud size

�

! = 1p
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FIG. 1: (a) The setup of the Efimovian expansion: a scale
invariant ultracold gas expands in a harmonic trap whose fre-
quency decreases as 1/(

p
�t). (b) The predication of the Efi-

movian expansion: the cloud size as a function of time t obeys
a log-periodic function and exhibits a series of plateaus. The
location of the plateaus obeys a geometric scaling law which
is a concequence of the discrete scaling symmetry.

R just increases as
p

t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(

p
�t) is so

special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(

p
�t), it is

Harmonic trap

decreasing the 
trap frequency

Scale Invariant Quantum Gas

Our Proposal
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Scale invariance emerges and plays an important role in strongly correlated many-body systems
such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry
also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both
theoretical predication and experimental observation of a novel type expansion dynamics of a scale
invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the
inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits
a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling
law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This
is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the
time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling
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Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(
p

�t) (� is a coe�cient and t is the time), as shown
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FIG. 1: (a) The setup of the Efimovian expansion: a scale
invariant ultracold gas expands in a harmonic trap whose fre-
quency decreases as 1/(
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movian expansion: the cloud size as a function of time t obeys
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R just increases as
p

t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(

p
�t) is so

special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(

p
�t), it is
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Zoo of Scale Invariant Quantum Gases

Non-interacting bosons/
fermions at any dimension

No other length scale 
except for density

Unitary Fermi gas at three 
dimension

Tonks gas of bosons/
fermions at one dimension

lim
ri!rj

 (r1, . . . , rN

) /
✓

1

r
ij

� 1

a
s

◆
 ̃(r1, . . . , rN

) (19)

a
s

=1

� ~2d2

2md2⇢
 � �

⇢2
 = E (20)

⇢! ⇤⇢

 =
p
⇢ cos[s0 log(⇢/⇢0)]

⇢! e2⇡/s0⇢

! = 1p
�t

t! e2⇡/s0t

E ! ~2

m⇤2
E (21)

k
F

r0 ⌧ 1 k
F

r0 � 1 k
F

r0 ⇠ 1

i~ @
@t
 =

"
H +

X

i

1

2
m!2r2

i

#
 (22)
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super Efimov physics[8], which indicates that the super
Efimov physics is crucially related to the e↵ective poten-
tial V (⇢) = �1/4⇢2 � (s2
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� 1/4)/⇢2 log2 ⇢, we consider
following time varying trapping frequency in this paper,
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t
0

where t
0

> t⇤.
Before studying the many-body dynamics of the quan-

tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is

ẍ+ !2(t)x = 0. (5)

If one replaces the position x(t) with  (r), the above
equation is exactly the zero energy Schrödinger equa-
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origin of the super Efimov physics. And the solution of
the equation of motion also shows a double log periodic
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log(log t) + ']. Thus, the classical
equation of motion suggests that there may exhibit super
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Now we are ready to solve the many-body dynamics
of Schrödinger equation(1) with time dependent trapping
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dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
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start with a finite initial trapping frequency at some time
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where t
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Before studying the many-body dynamics of the quan-

tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
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dent frequency !(t). � is a dimensionless parameter and
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Expansion Dynamics 

Scale Invariant 
Equation

Initial Condition

2

easy to show that the time-dependent Schrödinger equa-
tion exhibits a new space-time scaling symmetry under
the transformation r ! ⇤r and t ! ⇤2t. Due to the
scaling symmetry, it is straightforward to derive that the
equation-of-motion for the cloud size hR̂2i is given by (see
appendix for detail derivation):

d3

dt3
hR̂2i+

4
�t2

d

dt
hR̂2i � 4

�t3
hR̂2i = 0. (1)

Obviously, the di↵erential equation is invariant under a
continuous scaling of time t. However, in practices, one
should always start with a finite initial trap frequency !

0

before turning it down, which corresponds to an initial
time t

0

with !
0

= 1/(
p

�t
0

). The system is at equilibrium
for t < t

0

, that is to say, at t = t
0

, hR̂2i(t
0

) = R2

0

and
dn

dtn hR̂2i|t=t0 = 0 for all order of n. This sets a bound-
ary condition for Eq. 1 which can turn the continuous
scaling symmetry in the time domain into a discrete one.
The solution of this di↵erential equation depends on the
value of �. When 0 < � < 4, the solution is log-periodic
function as
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where s
0

= 2
p

4/�� 1 and ' = � arctan s
0

. Eq.
2 clearly reveals the discrete scaling symmetry, i.e.
when t

2

= e2⇡/s0t
1

, hR̂2i(t
2

) = e2⇡/s0hR̂2i(t
1

) and
dn

dtn hR̂2i|t=t2 = dn

dtn hR̂2i|t=t1 for all orders of n. There-
fore, at time tn = e2⇡n/s0t

0

, all orders of the time deriva-
tive for hR̂2i repeat their initial values at the initial time
t
0

and vanish again. That means the cloud size stops
to change around tn and the expansion dynamics shows
a series of plateaus. While when � > 4, the cloud size
simply follows a power law as hR̂2i(t) ⇠ t1+⌘ for t � t

0

,
where ⌘ =

p
1� 4/�.

Here we shall emphasize that this intriguing expansion
dynamics is a universal phenomenon for scale invariant
quantum gases. It is independent of the equation-of-
state. This result can be applied to non-interacting gas,
unitary Fermi gas in three-dimension, weakly-interacting
gases in two-dimension (when anomaly can be ignored),
and a Tonks gas in one-dimension.

Before proceeding to experimental observation of such
dynamical expansion of the ultracold Fermi gases, we
would also like to bring out the analogy to the Efimov
e↵ect. First, when solving the three-body problem in the
hyper-spherical coordinate, one final reaches an e↵ective
potential as �1/⇢2 (⇢ is the hyper-radius) that scales
the same way as the kinetic energy, and the Schrödinger
equation finally reduces to a one-dimensional scale in-
variant di↵erential equation [3]. Secondly, the short-
range boundary condition (i.e. the three-body param-
eter) plays the similar role as the initial trap frequency
here, which sets a boundary condition and turns the sym-
metry into a discrete scaling symmetry. Thirdly, the
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FIG. 2: The mean axial cloud size �z versus the expansion
time t

exp

= t� t
0

for a non-interacting Fermi gas of 6Li mea-
sured at B = 528 Gauss (a) and unitary Fermi gas measured
at B = 832 Gauss (b). Dots are measured data. Black dots for
�z = 0.02, blue dots for �z = 0.07, green dots for �z = 0.36 in
(a) and �z = 0.02, �z = 0.06, �z = 0.01 in (b), respectively.
The dashed lines are the theory curves based on Eq. 2 (with
s
0

given by Eq. 4) without any free parameters, and the solid
lines are the best fit using the function form of Eq. 2 with s

0

as a fitting parameter. The inset in (b) shows three density
profiles (after time-of-flight) when time t is in the plateau as
indicated by arrows. Error bars represent the standard devi-
ation of the statistic.

solution for the three-body wave function is also a log-
periodic function as Eq. 2. Finally, in our case � plays
the similar role as the mass ratio in the Efimov problem
that controls whether the e↵ect will occur, as well as the
scaling factor. Hence, the dynamical expansion shares
the same symmetry property and similar mathematical
description as the three-body problem. It is the counter-
part of the Efimov e↵ect in the time domian, and thus is
called as “the Efimovian expansion” here.

In our experiments, we use a balanced mixture of 6Li
fermions in the lowest two hyperfine states | "i ⌘ |F =
1/2, M = �1/2i and | #i ⌘ |F = 1/2, M = 1/2i.
Fermionic atoms are loaded into a cross-dipole trap to
perform evaporative cooling [10]. The resulting poten-
tial has a cylindrical symmetry around the propagation
axis of the laser and the trap anisotropic frequency ra-
tio !z/!r is about 9. The trap anisotropy causes an
additional complication compared to the isotropic case
discussed above. Nevertheless, as shown in the supple-



in practices, one should always start with a finite initial trap frequency !0 before turning it

down, which corresponds to an initial time t0 with !0 = 1/(
p
�t0), as shown in Fig. 1(b).

The system is at equilibrium for t < t0, and at t = t+0 , h ˆR2i(t0) = R2
0 and d
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dt

m h ˆR2i|
t=t0 = 0

for m = 1, 2. This sets a boundary condition for Eq. 1 which can turn the continuous scaling

symmetry in the time domain into a discrete one.

Furthermore, the solution of Eq. 1 can be generally written in a form as hR2
(t)i = C1f

2
1 +

C2f1f2 + C3f
2
2 (The constants C1, C2 and C3 are determined by the boundary conditions), and

both f1 and f2 are two linear independent solutions of

d2f

dt2
+

1

�t2
f = 0. (2)

This can be proved rigorously, as shown in the supplementary material. By replacing f(t) as

 (r), t as r, and regarding  as a real wave function, r as the hyper-radius, Eq. 2 is nothing

but the zero-energy Schrödinger equation for the Efimov effect in the hyper-spherical coordinate

(14,15). This reveals the connection between this dynamical expansion and the Efimov problem.

� = 4 is a special point for Eq. 2. For � < 4, two independent solutions for Eq. 2 can be taken

as f1 =

p
t cos((s0/2) ln t) and f2 =

p
t sin((s0/2) ln t), where s0 = 2

q
1/�� 1/4. Hence

hR2i can be finally casted into a log-periodic function as

h ˆR2i(t)
R2
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t
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1

sin

2 '


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✓
s0 ln

t

t0
+ '

◆�
, (3)

where ' = � arctan s0 is determined by the boundary condition at t = t0. Eq. 3 clearly

reveals the discrete scaling symmetry, i.e. when t2 = e2⇡/s0t1, h ˆR2i(t2) = e2⇡/s0h ˆR2i(t1) and

d

m

dt

m h ˆR2i|
t=t2 = e�2⇡(m�1)/s0 d

m

dt

m h ˆR2i|
t=t1 for all the m-th order derivatives. Therefore, at time

t
n

= e2⇡n/s0t0, the first- and the second-order time derivatives for h ˆR2i become zero and the

cloud expansion is strongly suppressed, that is to say, the expansion dynamics shows a series

of plateaus around each t
n

. Similar conclusion can also be obtained from the hydrodynamics

expansion equations (34,35). Note that s0 is tunable by the speed of how fast the trap frequency

4

in practices, one should always start with a finite initial trap frequency !0 before turning it

down, which corresponds to an initial time t0 with !0 = 1/(
p
�t0), as shown in Fig. 1(b).

The system is at equilibrium for t < t0, and at t = t+0 , h ˆR2i(t0) = R2
0 and d

m

dt

m h ˆR2i|
t=t0 = 0

for m = 1, 2. This sets a boundary condition for Eq. 1 which can turn the continuous scaling

symmetry in the time domain into a discrete one.

Furthermore, the solution of Eq. 1 can be generally written in a form as hR2
(t)i = C1f

2
1 +

C2f1f2 + C3f
2
2 (The constants C1, C2 and C3 are determined by the boundary conditions), and

both f1 and f2 are two linear independent solutions of
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dt2
+

1
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f = 0. (2)

This can be proved rigorously, as shown in the supplementary material. By replacing f(t) as

 (r), t as r, and regarding  as a real wave function, r as the hyper-radius, Eq. 2 is nothing

but the zero-energy Schrödinger equation for the Efimov effect in the hyper-spherical coordinate

(14,15). This reveals the connection between this dynamical expansion and the Efimov problem.

� = 4 is a special point for Eq. 2. For � < 4, two independent solutions for Eq. 2 can be taken

as f1 =

p
t cos((s0/2) ln t) and f2 =
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t sin((s0/2) ln t), where s0 = 2
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1/�� 1/4. Hence

hR2i can be finally casted into a log-periodic function as
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
1� cos' · cos
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s0 ln
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where ' = � arctan s0 is determined by the boundary condition at t = t0. Eq. 3 clearly

reveals the discrete scaling symmetry, i.e. when t2 = e2⇡/s0t1, h ˆR2i(t2) = e2⇡/s0h ˆR2i(t1) and

d

m

dt

m h ˆR2i|
t=t2 = e�2⇡(m�1)/s0 d

m

dt

m h ˆR2i|
t=t1 for all the m-th order derivatives. Therefore, at time

t
n

= e2⇡n/s0t0, the first- and the second-order time derivatives for h ˆR2i become zero and the

cloud expansion is strongly suppressed, that is to say, the expansion dynamics shows a series

of plateaus around each t
n

. Similar conclusion can also be obtained from the hydrodynamics

expansion equations (34,35). Note that s0 is tunable by the speed of how fast the trap frequency

4

2

easy to show that the time-dependent Schrödinger equa-
tion exhibits a new space-time scaling symmetry under
the transformation r ! ⇤r and t ! ⇤2t. Due to the
scaling symmetry, it is straightforward to derive that the
equation-of-motion for the cloud size hR̂2i is given by (see
appendix for detail derivation):

d3

dt3
hR̂2i+

4
�t2

d

dt
hR̂2i � 4

�t3
hR̂2i = 0. (1)

Obviously, the di↵erential equation is invariant under a
continuous scaling of time t. However, in practices, one
should always start with a finite initial trap frequency !

0

before turning it down, which corresponds to an initial
time t

0

with !
0

= 1/(
p

�t
0

). The system is at equilibrium
for t < t

0

, that is to say, at t = t
0

, hR̂2i(t
0

) = R2

0

and
dn

dtn hR̂2i|t=t0 = 0 for all order of n. This sets a bound-
ary condition for Eq. 1 which can turn the continuous
scaling symmetry in the time domain into a discrete one.
The solution of this di↵erential equation depends on the
value of �. When 0 < � < 4, the solution is log-periodic
function as

hR̂2i(t)
R2

0

=
t

t
0

1
sin2 '


1� cos ' · cos

✓
s
0

ln
t

t
0

+ '

◆�
, (2)

where s
0

= 2
p

4/�� 1 and ' = � arctan s
0

. Eq.
2 clearly reveals the discrete scaling symmetry, i.e.
when t

2

= e2⇡/s0t
1

, hR̂2i(t
2

) = e2⇡/s0hR̂2i(t
1

) and
dn

dtn hR̂2i|t=t2 = dn

dtn hR̂2i|t=t1 for all orders of n. There-
fore, at time tn = e2⇡n/s0t

0

, all orders of the time deriva-
tive for hR̂2i repeat their initial values at the initial time
t
0

and vanish again. That means the cloud size stops
to change around tn and the expansion dynamics shows
a series of plateaus. While when � > 4, the cloud size
simply follows a power law as hR̂2i(t) ⇠ t1+⌘ for t � t

0

,
where ⌘ =

p
1� 4/�.

Here we shall emphasize that this intriguing expansion
dynamics is a universal phenomenon for scale invariant
quantum gases. It is independent of the equation-of-
state. This result can be applied to non-interacting gas,
unitary Fermi gas in three-dimension, weakly-interacting
gases in two-dimension (when anomaly can be ignored),
and a Tonks gas in one-dimension.

Before proceeding to experimental observation of such
dynamical expansion of the ultracold Fermi gases, we
would also like to bring out the analogy to the Efimov
e↵ect. First, when solving the three-body problem in the
hyper-spherical coordinate, one final reaches an e↵ective
potential as �1/⇢2 (⇢ is the hyper-radius) that scales
the same way as the kinetic energy, and the Schrödinger
equation finally reduces to a one-dimensional scale in-
variant di↵erential equation [3]. Secondly, the short-
range boundary condition (i.e. the three-body param-
eter) plays the similar role as the initial trap frequency
here, which sets a boundary condition and turns the sym-
metry into a discrete scaling symmetry. Thirdly, the
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FIG. 2: The mean axial cloud size �z versus the expansion
time t

exp

= t� t
0

for a non-interacting Fermi gas of 6Li mea-
sured at B = 528 Gauss (a) and unitary Fermi gas measured
at B = 832 Gauss (b). Dots are measured data. Black dots for
�z = 0.02, blue dots for �z = 0.07, green dots for �z = 0.36 in
(a) and �z = 0.02, �z = 0.06, �z = 0.01 in (b), respectively.
The dashed lines are the theory curves based on Eq. 2 (with
s
0

given by Eq. 4) without any free parameters, and the solid
lines are the best fit using the function form of Eq. 2 with s

0

as a fitting parameter. The inset in (b) shows three density
profiles (after time-of-flight) when time t is in the plateau as
indicated by arrows. Error bars represent the standard devi-
ation of the statistic.

solution for the three-body wave function is also a log-
periodic function as Eq. 2. Finally, in our case � plays
the similar role as the mass ratio in the Efimov problem
that controls whether the e↵ect will occur, as well as the
scaling factor. Hence, the dynamical expansion shares
the same symmetry property and similar mathematical
description as the three-body problem. It is the counter-
part of the Efimov e↵ect in the time domian, and thus is
called as “the Efimovian expansion” here.

In our experiments, we use a balanced mixture of 6Li
fermions in the lowest two hyperfine states | "i ⌘ |F =
1/2, M = �1/2i and | #i ⌘ |F = 1/2, M = 1/2i.
Fermionic atoms are loaded into a cross-dipole trap to
perform evaporative cooling [10]. The resulting poten-
tial has a cylindrical symmetry around the propagation
axis of the laser and the trap anisotropic frequency ra-
tio !z/!r is about 9. The trap anisotropy causes an
additional complication compared to the isotropic case
discussed above. Nevertheless, as shown in the supple-
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SUPPLEMENTAL MATERIAL

The dynamical scaling solution

In the following, we consider a unitary Fermi gas
trapped in a harmonic potential whose frequency has a
time dependence. The Hamiltonian is given as

Ĥ(t) = Ĥ
0

(t) + V̂ (1)

where the non-interacting part

Ĥ
0

(t) =
2NX

i=1


� r2

i

2
+

x2

i

2�
1

t2
+

y2
i

2�
2

t2
+

z2
i

2�
3

t2

�
(2)

represents the kinetic energy plus a time dependent har-
monic trap and V̂ =

P
i2",j2# V (r

i

� r
j

) represents
the short range interaction between spin up and down
fermions. Due to the divergence of scattering length a,
V̂ is scale invariant in the zero interaction range limit
such that V (⇤r) = V (r)/⇤2. Thanks to this property of
V̂ and the specific choice of time dependence in Ĥ

0

(t),
the total Hamiltonian Ĥ has continuous scale invariance
in both configurational and temporal space.

Isotropic trapping. To illustrate the basic idea and get
a better physical intuition, we first consider the simpler
isotropic trap with �

1

= �
2

= �
3

= �. In this case, we
can calculated the cloud size R̂2 =

P
i

r2
i

directly from its

equation of motion. The first derivative of hR̂2i is given
as

i
d

dt
hR̂2i = h[R̂2, Ĥ(t)]i = 2ihD̂i, (3)

where D̂ =
P

i

1

2

(ri · pi + pi · ri) is the generator of a
spacial scaling transformation. On the other hand, the
equation of motion of hD̂i is

i
d

dt
hD̂i = h[D̂, Ĥ]i = 2i


hĤ(t)i � hR̂2i

�t2

�
. (4)

where we have used the fact that V (r) is scale invariant
such that [D̂, V̂ ] = 2iV̂ . Combining these two equations
we obtain

d2

dt2
hR̂2i = 4

"
hĤ(t)i � hR̂2i

�t2

#
. (5)

To make the equation closed, one still need to calculate
dhĤ(t)i/dt which can be obtain by Feynman’s theorem:

d

dt
hĤ(t)i =

*
dĤ(t)

dt

+
= �hR̂2i

�t3
. (6)

Combing (5) and (6), we finally obtain the following e-
quation of motion for hR̂2i

d3

dt3
hR̂2i+ 4

�t2
d

dt
hR̂2i � 4

�t3
hR̂2i = 0. (7)

Since this is a third order di↵erential equation, one
needs three initial conditions, which is the value of
hR̂2i, dhR̂2i/dt and d2hR̂2i/dt2 at the starting point
t = t

0

, to fix the solution. For simplicity, we assume
that the system remains at static before the expansion.
As a result, arbitrary order of time derivative of hR̂2i(t)
remains 0 for all t < t

0

. On the other hand, since Ĥ(t) is
continuous while dĤ(t)/dt is discontinuous at t = t

0

, it
is easy to check that only the first and second derivative
of hR̂2i(t) is continuous across t

0

while higher derivatives
are discontinuous. Thus we will apply the following ini-
tial conditions

hR̂2i(t
0

) = R2

0

(8)

d

dt
hR̂2i|

t=t0 =
d2

dt2
hR̂2i|

t=t0 = 0. (9)

The solution of (7) has very di↵erent behavior for small
and large value of �. For � > �

c

= 4, we have

hR̂2i(t)
R2

0

t/t
0

=
�2 � 1

�2

⇢
1� 1

2


(t/t

0

)�

� + 1
� (t/t

0

)��

� � 1

��
(10)

where � =
p
1� 4/�. One can see that in the limit t �

t
0

, the cloud size follows a simple power law hR̂2i(t) ⇠
t1+� , where � can be seen as an anomalous dimension in
the time domain, which describes the scaling deviation
from adiabatic limit. As a result, the continuous scaling
symmetry is still preserved for � > �

c

and there is no
dynamic Efimov e↵ect in this case.
The situation is much more interesting when 0 < � <

�
c

. In this case, we have

hR̂2i(t)
R2

0

=
t

t
0

sin2 '


1� cos' · cos

✓
s
0

ln
t

t
0

+ '

◆�
,(11)

where s
0

=
p
4/�� 1 and ' = � arctan s

0

. Instead of a

simple power law form, hR̂2i(t) now contains a logarith-
mic periodic part which breaks the continuous scaling
symmetry down to a discrete one in the time domain
and satisfy

hR̂2i(te
2n⇡
s0 ) = e

2n⇡
s0 hR̂2i(t) (12)

for arbitrary integer n.
Adiabatic limit. Now let us consider the adiabatic

limit(� ! 0) of the expansion. Physically, it represents
the situation that the trap expands extremely slow. In
this limit, Eq. 11 can be expressed as

hR̂2i(t)
R2

0

=
t

t
0


1�

r
�

4
sin

✓
s
0

ln
t

t
0

◆
+O(�)

�
. (13)

We find that the cloud size R̂2 follows the size of the trap
and grows proportional to t. This behavior is consistent
with the adiabatic theorem which claims that the system
remains in the instantaneous ground state of Ĥ(t).

2

easy to show that the time-dependent Schrödinger equa-
tion exhibits a new space-time scaling symmetry under
the transformation r ! ⇤r and t ! ⇤2t. Due to the
scaling symmetry, it is straightforward to derive that the
equation-of-motion for the cloud size hR̂2i is given by (see
appendix for detail derivation):

d3

dt3
hR̂2i+

4
�t2

d

dt
hR̂2i � 4

�t3
hR̂2i = 0. (1)

Obviously, the di↵erential equation is invariant under a
continuous scaling of time t. However, in practices, one
should always start with a finite initial trap frequency !

0

before turning it down, which corresponds to an initial
time t

0

with !
0

= 1/(
p

�t
0

). The system is at equilibrium
for t < t

0

, that is to say, at t = t
0

, hR̂2i(t
0

) = R2

0

and
dn

dtn hR̂2i|t=t0 = 0 for all order of n. This sets a bound-
ary condition for Eq. 1 which can turn the continuous
scaling symmetry in the time domain into a discrete one.
The solution of this di↵erential equation depends on the
value of �. When 0 < � < 4, the solution is log-periodic
function as

hR̂2i(t)
R2

0

=
t

t
0

1
sin2 '


1� cos ' · cos

✓
s
0

ln
t

t
0

+ '

◆�
, (2)

where s
0

= 2
p

4/�� 1 and ' = � arctan s
0

. Eq.
2 clearly reveals the discrete scaling symmetry, i.e.
when t

2

= e2⇡/s0t
1

, hR̂2i(t
2

) = e2⇡/s0hR̂2i(t
1

) and
dn

dtn hR̂2i|t=t2 = dn

dtn hR̂2i|t=t1 for all orders of n. There-
fore, at time tn = e2⇡n/s0t

0

, all orders of the time deriva-
tive for hR̂2i repeat their initial values at the initial time
t
0

and vanish again. That means the cloud size stops
to change around tn and the expansion dynamics shows
a series of plateaus. While when � > 4, the cloud size
simply follows a power law as hR̂2i(t) ⇠ t1+⌘ for t � t

0

,
where ⌘ =

p
1� 4/�.

Here we shall emphasize that this intriguing expansion
dynamics is a universal phenomenon for scale invariant
quantum gases. It is independent of the equation-of-
state. This result can be applied to non-interacting gas,
unitary Fermi gas in three-dimension, weakly-interacting
gases in two-dimension (when anomaly can be ignored),
and a Tonks gas in one-dimension.

Before proceeding to experimental observation of such
dynamical expansion of the ultracold Fermi gases, we
would also like to bring out the analogy to the Efimov
e↵ect. First, when solving the three-body problem in the
hyper-spherical coordinate, one final reaches an e↵ective
potential as �1/⇢2 (⇢ is the hyper-radius) that scales
the same way as the kinetic energy, and the Schrödinger
equation finally reduces to a one-dimensional scale in-
variant di↵erential equation [3]. Secondly, the short-
range boundary condition (i.e. the three-body param-
eter) plays the similar role as the initial trap frequency
here, which sets a boundary condition and turns the sym-
metry into a discrete scaling symmetry. Thirdly, the
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FIG. 2: The mean axial cloud size �z versus the expansion
time t

exp

= t� t
0

for a non-interacting Fermi gas of 6Li mea-
sured at B = 528 Gauss (a) and unitary Fermi gas measured
at B = 832 Gauss (b). Dots are measured data. Black dots for
�z = 0.02, blue dots for �z = 0.07, green dots for �z = 0.36 in
(a) and �z = 0.02, �z = 0.06, �z = 0.01 in (b), respectively.
The dashed lines are the theory curves based on Eq. 2 (with
s
0

given by Eq. 4) without any free parameters, and the solid
lines are the best fit using the function form of Eq. 2 with s

0

as a fitting parameter. The inset in (b) shows three density
profiles (after time-of-flight) when time t is in the plateau as
indicated by arrows. Error bars represent the standard devi-
ation of the statistic.

solution for the three-body wave function is also a log-
periodic function as Eq. 2. Finally, in our case � plays
the similar role as the mass ratio in the Efimov problem
that controls whether the e↵ect will occur, as well as the
scaling factor. Hence, the dynamical expansion shares
the same symmetry property and similar mathematical
description as the three-body problem. It is the counter-
part of the Efimov e↵ect in the time domian, and thus is
called as “the Efimovian expansion” here.

In our experiments, we use a balanced mixture of 6Li
fermions in the lowest two hyperfine states | "i ⌘ |F =
1/2, M = �1/2i and | #i ⌘ |F = 1/2, M = 1/2i.
Fermionic atoms are loaded into a cross-dipole trap to
perform evaporative cooling [10]. The resulting poten-
tial has a cylindrical symmetry around the propagation
axis of the laser and the trap anisotropic frequency ra-
tio !z/!r is about 9. The trap anisotropy causes an
additional complication compared to the isotropic case
discussed above. Nevertheless, as shown in the supple-
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easy to show that the time-dependent Schrödinger equa-
tion exhibits a new space-time scaling symmetry under
the transformation r ! ⇤r and t ! ⇤2t. Due to the
scaling symmetry, it is straightforward to derive that the
equation-of-motion for the cloud size hR̂2i is given by (see
appendix for detail derivation):

d3

dt3
hR̂2i+

4
�t2

d

dt
hR̂2i � 4

�t3
hR̂2i = 0. (1)

Obviously, the di↵erential equation is invariant under a
continuous scaling of time t. However, in practices, one
should always start with a finite initial trap frequency !

0

before turning it down, which corresponds to an initial
time t

0

with !
0

= 1/(
p

�t
0

). The system is at equilibrium
for t < t

0

, that is to say, at t = t
0

, hR̂2i(t
0

) = R2

0

and
dn

dtn hR̂2i|t=t0 = 0 for all order of n. This sets a bound-
ary condition for Eq. 1 which can turn the continuous
scaling symmetry in the time domain into a discrete one.
The solution of this di↵erential equation depends on the
value of �. When 0 < � < 4, the solution is log-periodic
function as

hR̂2i(t)
R2

0

=
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t
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1
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
1� cos ' · cos
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ln
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, (2)

where s
0

= 2
p

4/�� 1 and ' = � arctan s
0

. Eq.
2 clearly reveals the discrete scaling symmetry, i.e.
when t

2

= e2⇡/s0t
1

, hR̂2i(t
2

) = e2⇡/s0hR̂2i(t
1

) and
dn

dtn hR̂2i|t=t2 = dn

dtn hR̂2i|t=t1 for all orders of n. There-
fore, at time tn = e2⇡n/s0t

0

, all orders of the time deriva-
tive for hR̂2i repeat their initial values at the initial time
t
0

and vanish again. That means the cloud size stops
to change around tn and the expansion dynamics shows
a series of plateaus. While when � > 4, the cloud size
simply follows a power law as hR̂2i(t) ⇠ t1+⌘ for t � t

0

,
where ⌘ =

p
1� 4/�.

Here we shall emphasize that this intriguing expansion
dynamics is a universal phenomenon for scale invariant
quantum gases. It is independent of the equation-of-
state. This result can be applied to non-interacting gas,
unitary Fermi gas in three-dimension, weakly-interacting
gases in two-dimension (when anomaly can be ignored),
and a Tonks gas in one-dimension.

Before proceeding to experimental observation of such
dynamical expansion of the ultracold Fermi gases, we
would also like to bring out the analogy to the Efimov
e↵ect. First, when solving the three-body problem in the
hyper-spherical coordinate, one final reaches an e↵ective
potential as �1/⇢2 (⇢ is the hyper-radius) that scales
the same way as the kinetic energy, and the Schrödinger
equation finally reduces to a one-dimensional scale in-
variant di↵erential equation [3]. Secondly, the short-
range boundary condition (i.e. the three-body param-
eter) plays the similar role as the initial trap frequency
here, which sets a boundary condition and turns the sym-
metry into a discrete scaling symmetry. Thirdly, the
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FIG. 2: The mean axial cloud size �z versus the expansion
time t

exp

= t� t
0

for a non-interacting Fermi gas of 6Li mea-
sured at B = 528 Gauss (a) and unitary Fermi gas measured
at B = 832 Gauss (b). Dots are measured data. Black dots for
�z = 0.02, blue dots for �z = 0.07, green dots for �z = 0.36 in
(a) and �z = 0.02, �z = 0.06, �z = 0.01 in (b), respectively.
The dashed lines are the theory curves based on Eq. 2 (with
s
0

given by Eq. 4) without any free parameters, and the solid
lines are the best fit using the function form of Eq. 2 with s

0

as a fitting parameter. The inset in (b) shows three density
profiles (after time-of-flight) when time t is in the plateau as
indicated by arrows. Error bars represent the standard devi-
ation of the statistic.

solution for the three-body wave function is also a log-
periodic function as Eq. 2. Finally, in our case � plays
the similar role as the mass ratio in the Efimov problem
that controls whether the e↵ect will occur, as well as the
scaling factor. Hence, the dynamical expansion shares
the same symmetry property and similar mathematical
description as the three-body problem. It is the counter-
part of the Efimov e↵ect in the time domian, and thus is
called as “the Efimovian expansion” here.

In our experiments, we use a balanced mixture of 6Li
fermions in the lowest two hyperfine states | "i ⌘ |F =
1/2, M = �1/2i and | #i ⌘ |F = 1/2, M = 1/2i.
Fermionic atoms are loaded into a cross-dipole trap to
perform evaporative cooling [10]. The resulting poten-
tial has a cylindrical symmetry around the propagation
axis of the laser and the trap anisotropic frequency ra-
tio !z/!r is about 9. The trap anisotropy causes an
additional complication compared to the isotropic case
discussed above. Nevertheless, as shown in the supple-

Figure 2: �
z

(with �2
z

= 2h ˆR2
z

i) versus the expansion time t
exp

= t � t0 for a non-interacting
Fermi gas of 6Li measured at B = 528 Gauss (a) and a unitary Fermi gas measured at B = 832

Gauss (b). Dots are measured data. Black, blue and green dots denote �
z

= 0.02, 0.07 and
0.36 for (a), and �

z

= 0.01, 0.02 and 0.06 for (b). The dashed lines are the theory curves based
on Eq. 3 (with s0 given by Eq. 5) without any free parameters, and the solid lines are the best
fit using the function form of Eq. 3 with s0 as a fitting parameter. Red dots in both figures
denote the case with �

z

= 4, and the shaded area is the regime where expansion does not show
discrete scaling symmetry. The inset in (b) shows three successive density profiles (after the
time-of-flight) when the time t

exp

locates inside a plateau as indicated by the arrows. Error bars
represent the standard deviation of the statistic.
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Figure 3: (a) s0 obtained from fitting the expansion curves v.s. � ⌘
q
1/�
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� 1/4. The solid
lines are the linear fitting curves and the dashed lines are s0 = !

b
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b

= 2 for the non-
interacting fermions and !

b

=

q
12/5 for the unitary Fermi gas. (b) For a given � and for

the unitary Fermi gas, s0 obtained from fitting the expansion curves for different fermion num-
bers and temperatures. Solid line is the theory value for the unitary Fermi gas and the arrow
indicates the theory value for the non-interacting Fermi gas with same �. Error bars in the ver-
tical direction represent the fitting error and the standard deviation of the statistic. Error bars
in the horizontal direction represents the standard deviation of the statistic in determining � in
repeated measurements.
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with s0 = 10.53 in (a) and

density profile and � is the value of

measured for the unitary Fermi gas and the non-interacting Fermi gas, respectively. They have
in (a) and s0 = 5.88 in (b).
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Figure 4: �
z

/�
z,0 as a function of t

exp

/t0 (t
exp

= t � t0) is universal for the non-interacting
and the unitary Fermi gas, as long as they have the same s0. Blue dots and red dots are data
measured for the unitary Fermi gas and the non-interacting Fermi gas, respectively. They have
the same s0 with s0 = 10.53 in (a) and s0 = 5.88 in (b). �

z

is obtained from fitting the Gaussian
density profile and �

z,0 is the value of �
z

at t = t0. Error bars represent the standard deviation
of the statistic.
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z

/�
z,0 as a function of t

exp

/t0 (t
exp

= t � t0) is universal for the non-interacting
and the unitary Fermi gas, as long as they have the same s0. Blue dots and red dots are data
measured for the unitary Fermi gas and the non-interacting Fermi gas, respectively. They have
the same s0 with s0 = 10.53 in (a) and s0 = 5.88 in (b). �

z

is obtained from fitting the Gaussian
density profile and �

z,0 is the value of �
z

at t = t0. Error bars represent the standard deviation
of the statistic.
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exp

= t � t0) is universal for the non-interacting
and the unitary Fermi gas, as long as they have the same s0. Blue dots and red dots are data
measured for the unitary Fermi gas and the non-interacting Fermi gas, respectively. They have
the same s0 with s0 = 10.53 in (a) and s0 = 5.88 in (b). �

z

is obtained from fitting the Gaussian
density profile and �

z,0 is the value of �
z

at t = t0. Error bars represent the standard deviation
of the statistic.
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Observation of the Efimovian expansion
in scale-invariant Fermi gases
Shujin Deng,1* Zhe-Yu Shi,2* Pengpeng Diao,1 Qianli Yu,1 Hui Zhai,2

Ran Qi,3† Haibin Wu1,4†

Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry
manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on
the theoretical prediction and experimental observation of a distinct type of expansion
dynamics for scale-invariant quantum gases.When the frequency of the harmonic trap holding
the gas decreases continuously as the inverse of time t, the expansion of the cloud size
exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric
scaling law with a controllable scale factor, and the expansion dynamics is governed by a
log-periodic function. This marked expansion shares the same scaling law and mathematical
description as the Efimov effect.

I
nteraction between dilute ultracold atoms is
described by the s-wave scattering length.
For a spin-1/2 Fermi gas, when the scattering
length diverges at a Feshbach resonance,
there is no length scale other than the inter-

particle spacing in this many-body system, and
therefore the system, known as the unitary Fermi
gas, becomes scale invariant. The spatial scale
invariance leads to universal thermodynamics
and transport properties, as revealed by many
experiments (1–13). On the other hand, in a boson
system with an infinite scattering length, three-
body bound states can form, where the extra
length scale of the three-body parameter turns
the continuous scaling symmetry into a discrete
scaling symmetry and gives rise to an infinite
number of three-body bound states whose ener-
gies obey a geometric scaling symmetry. This so-
called Efimov effect (14, 15) has been observed in
cold atom experiments (16–23), with recent work
confirming the geometric scaling of the energy
spectrum (24–27).
For a harmonic trapped gas, the expansion

dynamics offers great insight to the property of
the gas (28–33). Here, we consider what happens
to a scale-invariant quantum gas held in a har-
monic trap when the trap is gradually opened up
by decreasing the trap frequency w as 1=ð

ffiffiffi
l

p
tÞ,

where l is a constant and t is time (Fig. 1, A and
B). Naïvely, by dimensional analysis, one would
expect that the cloud sizeR just increases as

ffiffi
t

p
.

Here we show, both theoretically and experi-
mentally, that when l is smaller than a critical
value, the expansion dynamics displays a discrete
scaling symmetry in the time domain. As a
function of t, R displays a sequence of plateaus,
whichmeans that at a set of discrete times tn the

cloud expansion stops, despite the continuous
decreasing of the trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior.
To explain these dynamics, we first point out

why w ¼ 1=ð
ffiffiffi
l

p
tÞ is special. For simplicity, we

first consider a three-dimensional (3D) isotropic
trap V ðrÞ ¼ mw2r2=2. In the absence of a trap-
ping potential, the system is invariant under a
scale transformation r→ Lr, whereas in the
presence of a static harmonic trap, the fixed har-
monic length introduces an additional length
scale that breaks this spatial scale invariance.
Nevertheless, if w changes as 1=ð

ffiffiffi
l

p
tÞ, the time-

dependent Schrödinger equation exhibits a space-

time scaling symmetry under the transformation
r→ Lr and t → L2t.
Defining the cloud size as R^2 ¼

X

i

r2i =N ,

the equation-of-motion for R^ 2 can be derived as

i ddthR
^ 2i ¼ h½R^2;H^ðtÞ%i ¼ 2i

NhD^ i, where D^ ¼
X

i
1
2ðri ⋅ pi þ pi ⋅ riÞ is the generator of a spatial
scaling transformation. Using the fact that the
system is scale invariant, and by taking higher-
order time derivatives of hR^2i, we conclude that
the cloud size hR^2i obeys the differential equation
(see supplementary text S1):

d3

dt3
hR^2iþ 4

lt2
d
dt

hR^2i − 4
lt3

hR^2i ¼ 0 ð1Þ

In the experiment, we start with a finite initial
trap frequencyw0 before turning it down (Fig. 1B).
The system is at equilibrium for t < t0, and at
t ¼ tþ0 , hR

^2iðt0Þ ¼ R2
0 and dm

dtm hR
^2ijt¼t0 ¼ 0 for

m ¼ 1; 2. This sets a boundary condition for
Eq. 1 that can turn its continuous scaling sym-
metry in the time domain into a discrete one.
The solution of Eq. 1 can be generally written in

a form as hR2ðtÞi ¼ C1 f 21 þ C2 f1 f2 þ C3 f 22 (The
constants C1, C2, and C3 are determined by the
boundary conditions), where f1 and f2 are two
linear independent solutions (see supplementary
text S1) of

d2f
dt2

þ 1
lt2

f ¼ 0 ð2Þ

By replacing f ðtÞ with yðrÞ and t with r and
regarding y as a real wave function and r as the
hyper-radius, Eq. 2 becomes the zero-energy
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Fig. 1. The schematic of the Efimovian expansion. (A and B) A scale-invariant ultracold gas is first
held in a harmonic trap with frequency w0. Then, starting from t0 ¼ 1=ð

ffiffiffi
l

p
w0Þ, the trap frequency starts

to decrease as 1=ð
ffiffiffi
l

p
tÞ, and the cloud expands. (C) The theoretical predication of the Efimovian

expansion: The cloud sizeR as a function of time t follows a log-periodic function and exhibits a series of
plateaus. The locations of the plateaus obey a geometric scaling law.
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 Schrödinger equation for the Efimov effect in
the hyperspherical coordinate (14, 15). This reveals
a connection between this dynamical expansion
and the Efimov problem. l ¼ 4 is a special point
for Eq. 2. For l < 4, there are two independent
solutions of Eq. 2, f1 ¼

ffiffi
t

p
cosððs0=2ÞlntÞ and

f2 ¼
ffiffi
t

p
sinððs0=2ÞlntÞ, where s0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l − 1=4

p
;

hR2i then takes a log-periodic form

hR^2iðtÞ
R2
0

¼ t
t0

1

sin2ϕ
½1 − cosϕ⋅cosðs0ln

t
t0
þϕÞ&ð3Þ

where ϕ ¼ −arctans0 is determined by the
boundary condition at t ¼ t0. Equation 3 clear-
ly reveals the discrete scaling symmetry—i.e.,
when t2 ¼ e2p=s0 t1, hR

^2iðt2Þ ¼ e2p=s0 hR^2iðt1Þ, and
dm

dtm hR
^2ijt¼t2 ¼ e−2pðm−1Þ=s0 dm

dtm hR
^2ijt¼t1 for all the

m-th order derivatives. Therefore, at time tn ¼
e2pn=s0 t0, the first- and second-order time deriv-
atives for hR^2i become zero and the cloud ex-
pansion is strongly suppressed, that is to say,
the expansion dynamics shows a series of pla-
teaus around each tn. A similar conclusion can
also be obtained from the hydrodynamics ex-
pansion equations (34, 35). Note that s0 is
tunable by the speed of the decrease of the trap
frequencywðtÞ. When l > 4, hR^2i simply follows
a power law as hR^ 2iðtÞ ∼ t1þh for t ≫ t0, where
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4=l

p
. A detailed comparison between

this expansion and the Efimov effect is sum-
marized in table S1. We will refer to this effect
as the Efimovian expansion.
In our experiment, we use a balanced mix-

ture of 6Li fermions in the lowest two hyperfine
states j↑i ≡ jF ¼ 1=2;MF ¼ −1=2i and j↓ i ≡ jF ¼
1=2;MF ¼ 1=2i. Fermionic atoms are loaded into
a cross-dipole trap to perform evaporative cooling.
The resulting potential has a cylindrical symmetry
around the z axis, and the trap anisotropic fre-
quency ratio wr=wz is about 9. The above the-
oretical considerations hold for the isotropic case,
but similar results can be obtained for an aniso-
tropic trap (see supplementary text S2). Starting at
the initial time t0, the trap potential is lowered as

V ðrÞ ¼ m
2lrt2

r2 þ m
2lzt2

z2 ð4Þ

Because lr=lz ¼ ðwz=wrÞ2≪ 1 the effect ismore
pronounced along the axial direction than in the
transverse direction. Therefore, hereafter we focus
on the cloud expansion along the axial direction.
Theory shows (see supplementary text S2) that
the axial cloud square size R2

z obeys the same
form as Eq. 3, except

s0 ¼ wb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=lz − 1=4

p
ð5Þ

where wb is a factor related to the breathing
mode frequency, wb ¼ 2 for the noninteracting
gas, and wb ¼

ffiffiffiffiffiffiffiffiffiffi
12=5

p
for the unitary Fermi gas

along the axial direction. A Feshbach resonance
is used to tune the interaction of the atoms either
to the noninteracting regime with the magnetic
field B = 528 G or to the unitary regime with B =
832G. The trap frequency is lowered by decreasing
the laser intensity, and lz is controlled by the de-

crease rate of the laser intensity, with the initial
axial trap depth always fixed at 5%U0, where U0

is the full trap potential. Thus, different lz corre-
sponds to different t0 ¼ 1=ð

ffiffiffiffiffi
lz

p
w0
z Þ, where w0

z is
the initial axial trap frequency. Finally, after cer-
tain expansion time texp with the trap, the trap is
completely turned off and the cloud is probed by
standard resonant absorption imaging techniques
after a time-of-flight expansion time ttof = 200 ms.
Each data point is an average of five shots of the
measurements at identical parameters.
The time-of-flight density profile along the

axial direction is fitted by a Gaussian function as
A0 þ A1e−z

2=s2z , fromwhichwe obtain sz;obs. sz;obs
is related to the in situ cloud size by a scale factor
bz via sz;obs ¼ bzðttof Þsz ; bzðttof Þ can be obtained
from either hydrodynamic or ballistic expansion
equation with the time-of-flight time ttof (see
supplementary text S5). Because the trap is quite
anisotropic, the cloud expands slowly along the
axial direction during a short time-of-flight, and
the expansion factor bz only gives a quantitative
correction to the results. Figure 2 shows the
typical measurements of sz with different lz for
both the noninteracting and the unitary Fermi
gases. For instance, for lz ¼ 0:06, we decrease
the trap frequency from 2p' 567:3 Hz to 2p'
71:0 Hzwithin 8ms. Dots are themeasureddata,
and the solid and the dashed lines are both theo-
retical curves based on Eq. 3, taking s0 as a fitting
parameter or using s0 given by Eq. 5, respectively.
Because sz is obtained by a Gaussian fit to the
density profile, s2z ¼ 2hR^2z i, and thus the theoret-

ical expression for sz=sz;0 is simply a square root
of Eq. 3. Figure 2 clearly shows the plateaus for
the expansion dynamics and an excellent agree-
ment between theory and experiment. Density
profiles for three successive measurement times
inside a plateau almost perfectly overlapwith each
other (Fig. 2B, inset), which confirms that the
expansion stops at the plateau.
For smaller lz, the trap frequency decreases

slower, the plateaus become denser, and the dif-
ference in height between two adjacent plateaus
becomes smaller. The adiabatic limit is reached
for lz → 0, where the mean square of the cloud
size follows a linear expansion as expected.
For the critical value lz ¼ 4 (red dots in Fig. 2),

no plateaus are observed within finite expansion
time.How the plateaus disappears as lz→4 could
not bemeasuredhere. This is because as lz→4, s0
decreases toward zero, the period increases ex-
ponentially, and therefore even the first plateau
would appear after a very long expansion time.
On the other hand, there is a lower limit for the
trap frequency below which atoms cannot be
trapped. Together with the fact that the larger
the lz , the faster the trapping frequency drops
and the shorter the expansion time, the plateaus
could not be observed even before reaching the
critical value lz ¼ 4 within the finite expansion
time. Nevertheless, for comparison, we have per-
formed measurements where the trapping fre-
quency decreases with similar average speeds in
Fig. 2, but the time dependence of wðtÞ is differ-
ent from 1=t, which breaks the aforementioned

372 22 JULY 2016 • VOL 353 ISSUE 6297 sciencemag.org SCIENCE

Fig. 2. Experimental
observation of the Efi-
movian expansion.The
mean axial cloud size sz

(with s2z ¼ 2hR^2z i) versus
the expansion time
texp ¼ t − t0 for (A) a non-
interacting Fermi gas of 6Li
measured at B = 528 G
and (B) a unitary Fermi gas
measured at B = 832 G.
Dots are measured data.
Black, blue, and green dots
denote lz ¼ 0:02, 0:07,
and 0:36 for (A), and
lz ¼ 0:01, 0:02, and 0:06
for (B). The dashed lines
are the theory curves
based on Eq. 3 (with s0
given by Eq. 5) without any
free parameters, and the
solid lines are the best fit
using the function form of
Eq. 3, with s0 as a fitting
parameter. Red dots in
both figures denote the
case with lz ¼ 4, and the
shaded area is the regime
where expansion does not
show discrete scaling

symmetry. The inset in (B) shows three successive density profiles (after the time-of-flight) when the
time texp is located inside a plateau, as indicated by the arrows. Error bars, mean ± SD.
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Observation of the Efimovian expansion
in scale-invariant Fermi gases
Shujin Deng,1* Zhe-Yu Shi,2* Pengpeng Diao,1 Qianli Yu,1 Hui Zhai,2

Ran Qi,3† Haibin Wu1,4†

Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry
manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on
the theoretical prediction and experimental observation of a distinct type of expansion
dynamics for scale-invariant quantum gases.When the frequency of the harmonic trap holding
the gas decreases continuously as the inverse of time t, the expansion of the cloud size
exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric
scaling law with a controllable scale factor, and the expansion dynamics is governed by a
log-periodic function. This marked expansion shares the same scaling law and mathematical
description as the Efimov effect.

I
nteraction between dilute ultracold atoms is
described by the s-wave scattering length.
For a spin-1/2 Fermi gas, when the scattering
length diverges at a Feshbach resonance,
there is no length scale other than the inter-

particle spacing in this many-body system, and
therefore the system, known as the unitary Fermi
gas, becomes scale invariant. The spatial scale
invariance leads to universal thermodynamics
and transport properties, as revealed by many
experiments (1–13). On the other hand, in a boson
system with an infinite scattering length, three-
body bound states can form, where the extra
length scale of the three-body parameter turns
the continuous scaling symmetry into a discrete
scaling symmetry and gives rise to an infinite
number of three-body bound states whose ener-
gies obey a geometric scaling symmetry. This so-
called Efimov effect (14, 15) has been observed in
cold atom experiments (16–23), with recent work
confirming the geometric scaling of the energy
spectrum (24–27).
For a harmonic trapped gas, the expansion

dynamics offers great insight to the property of
the gas (28–33). Here, we consider what happens
to a scale-invariant quantum gas held in a har-
monic trap when the trap is gradually opened up
by decreasing the trap frequency w as 1=ð

ffiffiffi
l

p
tÞ,

where l is a constant and t is time (Fig. 1, A and
B). Naïvely, by dimensional analysis, one would
expect that the cloud sizeR just increases as

ffiffi
t

p
.

Here we show, both theoretically and experi-
mentally, that when l is smaller than a critical
value, the expansion dynamics displays a discrete
scaling symmetry in the time domain. As a
function of t, R displays a sequence of plateaus,
whichmeans that at a set of discrete times tn the

cloud expansion stops, despite the continuous
decreasing of the trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior.
To explain these dynamics, we first point out

why w ¼ 1=ð
ffiffiffi
l

p
tÞ is special. For simplicity, we

first consider a three-dimensional (3D) isotropic
trap V ðrÞ ¼ mw2r2=2. In the absence of a trap-
ping potential, the system is invariant under a
scale transformation r→ Lr, whereas in the
presence of a static harmonic trap, the fixed har-
monic length introduces an additional length
scale that breaks this spatial scale invariance.
Nevertheless, if w changes as 1=ð

ffiffiffi
l

p
tÞ, the time-

dependent Schrödinger equation exhibits a space-

time scaling symmetry under the transformation
r→ Lr and t → L2t.
Defining the cloud size as R^2 ¼

X

i

r2i =N ,

the equation-of-motion for R^ 2 can be derived as

i ddthR
^ 2i ¼ h½R^2;H^ðtÞ%i ¼ 2i

NhD^ i, where D^ ¼
X

i
1
2ðri ⋅ pi þ pi ⋅ riÞ is the generator of a spatial
scaling transformation. Using the fact that the
system is scale invariant, and by taking higher-
order time derivatives of hR^2i, we conclude that
the cloud size hR^2i obeys the differential equation
(see supplementary text S1):

d3

dt3
hR^2iþ 4

lt2
d
dt

hR^2i − 4
lt3

hR^2i ¼ 0 ð1Þ

In the experiment, we start with a finite initial
trap frequencyw0 before turning it down (Fig. 1B).
The system is at equilibrium for t < t0, and at
t ¼ tþ0 , hR

^2iðt0Þ ¼ R2
0 and dm

dtm hR
^2ijt¼t0 ¼ 0 for

m ¼ 1; 2. This sets a boundary condition for
Eq. 1 that can turn its continuous scaling sym-
metry in the time domain into a discrete one.
The solution of Eq. 1 can be generally written in

a form as hR2ðtÞi ¼ C1 f 21 þ C2 f1 f2 þ C3 f 22 (The
constants C1, C2, and C3 are determined by the
boundary conditions), where f1 and f2 are two
linear independent solutions (see supplementary
text S1) of

d2f
dt2

þ 1
lt2

f ¼ 0 ð2Þ

By replacing f ðtÞ with yðrÞ and t with r and
regarding y as a real wave function and r as the
hyper-radius, Eq. 2 becomes the zero-energy
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Fig. 1. The schematic of the Efimovian expansion. (A and B) A scale-invariant ultracold gas is first
held in a harmonic trap with frequency w0. Then, starting from t0 ¼ 1=ð

ffiffiffi
l

p
w0Þ, the trap frequency starts

to decrease as 1=ð
ffiffiffi
l

p
tÞ, and the cloud expands. (C) The theoretical predication of the Efimovian

expansion: The cloud sizeR as a function of time t follows a log-periodic function and exhibits a series of
plateaus. The locations of the plateaus obey a geometric scaling law.
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spatial-time scaling symmetry. The plateaus are
indeed not observed in the expansion (fig. S2).
We now demonstrate that these dynamics are

universal. First, we should verify that s0 relates to
lz via Eq. 5. In the experiment, lz is determined
by the trap frequencies measured by the para-
metric resonance, and s0 is extracted from the
best fit of the expansion data in Fig. 2. The
universal relation between s0 and g ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=lz − 1=4

p

is plotted in Fig. 3A. s0ðgÞ can fit very well with a
linear function s0 ¼ kg, which gives the slope
k ¼ 1:94 T 0:03 for the noninteracting case and
k ¼ 1:53 T 0:03 for the unitary Fermi gas. These

are in good agreement with wb ¼ 2 for the
noninteracting case and wb ¼

ffiffiffiffiffiffiffiffiffiffi
12=5

p
¼ 1:55 for

the unitary case. The Efimovian expansion is also
robust and insensitive to the temperature and
atom number of the Fermi gas (Fig. 3B).
Second, we notice that the noninteracting and

the unitary cases only differ in the relation
between s0 and l, and once s0 is given to be the
same, the dynamics are exactly identical for
these two different systems (Fig. 3, C and D). In
other words,Rz=Rz (0) is a function of s0 (orϕ)
and t=t0 is a universal function for all scale-
invariant systems.

Finally, we study a time-reversed compression
process. Consider an expansion process from t0
to tf , where the trap frequency decreases from
w0 ¼ 1=ð

ffiffiffi
l

p
t0Þ to wf ¼ 1=ð

ffiffiffi
l

p
tf Þ. Now we con-

sider an inverted process of increasing the trap
frequency as w ¼ 1=ð

ffiffiffi
l

p
ðtf þ t0− tÞÞ, where the

trap frequency increases from wf to w0 when t
changes from t0 to tf . For the compression
dynamics to really invert the expansion dynam-
ics, tf has to be carefully chosen to satisfy
tf ¼ e2pn=s0 t0. We perform such an experiment
(Fig. 4) showing that the dynamical process with
a carefully chosen boundary is time-reversal
symmetric. The small asymmetry arises because
the lowering of the trap during expansion (black
dots) causes evaporative cooling, which decreases
cloud sizes correspondingly.
Our results are universal for all scale-invariant

quantumgases. Future experiments can test them
with a Tonks gas in 1D and in a 2D quantum gas,
where the deviation from the log-periodic be-
havior can be used to calibrate the scaling sym-
metry anomaly in 2D (36–39). In the 3D case, it
will be interesting to investigate the scaling sym-
metry breaking when the system is tuned away
from the scale-invariant points of zero and infinite
s-wave scattering length. The study could also be
generalized to observe a dynamic analogy of a re-
cently proposed super-Efimov effect (40–42).
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Fig. 3. Universality of the Efimovian expansion. (A) s0 obtained from fitting the expansion curves

v.s. g ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=lz − 1=4

p
. The solid lines are the linear fitting curves, and the dashed lines are s0 ¼ wbg,

with wb ¼ 2 for the noninteracting fermions and wb ¼
ffiffiffiffiffiffiffiffiffiffiffi
12=5

p
for the unitary Fermi gas. (B) For a given

lz ¼ 0:017 and for the unitary Fermi gas, s0 is obtained from fitting the expansion curves for different
fermion numbers and temperatures as indicated (TF is the Fermi temperature). The solid line is the
theory value for the unitary Fermi gas, and the arrow indicates the theory value for the non-
interacting Fermi gas with the same lz . sz=sz;0 as a function of texp=t0 for the noninteracting (red
dots) and the unitary Fermi gas (blue dots) with s0 ¼ 10:53 in (C) and s0 ¼ 5:88 in (D). Error bars,
mean ± SD.

Fig. 4. Time-reversal symmetry
of the Efimovian expansion. sz for
the expansion and its inverted
compression process from t0 to
tf . texp ¼ t − t0. Black dots are the
expansion process, with
w ¼ 1=ð

ffiffiffi
l

p
tÞ and the frequency

changing from w0 ¼ 1=ð
ffiffiffi
l

p
t0Þ (at

t0) to wf ¼ 1=ð
ffiffiffi
l

p
tfÞ (at tf). Blue

dots are the inverted compression
process, with w ¼ 1=ð

ffiffiffi
l

p
ðtf þ t0 − tÞÞ

and the frequency changing from
wf (at t0) to w0 (at tf). Here,
lz ¼ 0:01 and the data are taken in
the unitary regime. Error bars,
mean ± SD.
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Super-Efimov Effect

Efimov SuperEfimov

Statistics Bosons/mixture Fermions

Dimension 3D 2D

Interaction s-wave resonance p-wave resonance

Scaling

Effective Potential

Review

11

the phase shift given by equation (2.41) into these formalisms 
[70–73]. This brings out a correction r Re

3/∝  to the Efimov 
attraction (2.33) [70–72]. One can use more elaborate expres-
sions describing the energy dependence of the phase shift over 
a wider range of energy [74, 75].

It would be tempting to think that such a procedure regu-
larises the Thomas collapse problem of the zero-range theory 
and sets the three-body parameter through the new length 
scale given by re [75]. It is indeed the case for a large and 
negative effective range, a situation that arises in the case 
of narrow Feshbach resonances [76]—see section  4.2.4.3. 
However, in general the procedure does not regularise the 
equations, and one still has to impose a regularisation of the 
equations  that introduces a three-body parameter. Such an 
approach with a fixed three-body parameter has not been quite 
successful in reproducing experimental data and theoretical 
calculations with finite-range interactions; an energy depend-
ence of the three-body parameter is needed to reproduce these 
results [74, 77, 78]. A likely reason is that equation (2.41) only 
accounts for the range corrections of the phase shift, i.e. the 
on-the-energy-shell scattering properties, which correspond 
to asymptotic properties of two-body systems, but not the off-
the-energy-shell properties which correspond to their short-
range correlations. In this respect, separable potentials [79] 
are useful tools to account for finite-range effects, since they 
can reproduce both on- and off-the-energy-shell finite-range 
effetcs, while keeping the simplicity of the zero-range theory 
[80, 81]—see appendix for details.

An alternative and more systematic approach to range cor-
rections is based on the effective field theory [82, 83]. Effective 
field theory [52] is the effective theory that one can write at 
low energy respecting the basic symmetries of the systems. In 
this framework, the ratio b a/| | of the range of interaction over 
the scattering length can be treated as an expansion parameter. 
The leading order in this expansion reproduces the zero-range 
theory [52]. Calculations to the next-to-leading order have been 
performed in [83–86] and show the necessity to introduce a sec-
ond three-body parameter to renormalise the equation at this 
order.

A more recent approach [87–89] based on numerical calcul-
ations with model potentials has provided an empirical way to 
reproduce range corrections to the zero-range theory. These 
works show that finite-range deviations from universal form-
ulas such as equation (2.39) can be accounted for to a good 
accuracy over a wide range of scattering length and energy 
by simply replacing the scattering length a by a length aB, 
and shifting the three-body parameter by a quantity inversely 
proportional to a. The length aB is defined as the value 1κ−  
that is the solution of itan i0( )δ κ = − , corresponding to the 
pole of the scattering amplitude f k k k iktan 0

1( ) ( / ( ) )δ= − − , 
provided that an analytic continuation to imaginary k is pos-

sible. For a  >  0, the energy 
ma

2

B
2

ħ−  therefore coincides with the 

two-body bound-state energy, while for a  <  0 it corresponds 
to the energy of a virtual bound state, since there is no physi-
cal bound state. This procedure has been used to fit theor etical 
results obtained with finite-range interactions, as well as 
experimental data obtained for lithium-7 [89, 90]. According 

to this procedure, the universal formula (2.39) for the trimer 
energy is modified as follows (changes are emphasised in red),

κ+ = +Γ π ξ∗ − | | ∆ | |E
ma

a
m

e e .n n n s s
2

B
2

2 2
2 0 0

ħ ħ ( / )( ) / ( )/ (2.42)

Equivalently, the finite-range energy curve can be mapped to 
the original Efimov curve by plotting the renormalised energy 
E En

n
n2( ) ( )′ λ=  (or wave number n

n
n( ) ( )′κ λ κ= ) as a function 

of the renormalised inverse scattering length a an
1

B
1′ λ=− −  

with the a-dependent renormalisation coefficient 
a1n n

1( /( ))λ κ= + Γ ∗
− . An example of such mapping will be 

shown in the case of helium-4 in section 2.1.7.1.
The replacement a aB→  is related to the two-body range 

correction given by equation (2.41). Indeed, according to the 
definition of aB and to equation (2.41), one has:

a
r r a

1
1 1 2e e

B

1( )/≈ − −−
 (2.43)

⎜ ⎟⎛
⎝

⎞
⎠≈ + + …

a
r
a

1
1

1
2

.e (2.44)

In contrast, the shift an/Γ  is a range correction to the three-
body parameter,

a
1 n/⎜ ⎟⎛

⎝
⎞
⎠κ κ κ= + Γ + …′∗ ∗

∗

that is likely associated with two- and three-body short-range 
correlations. The form of this shift was recently justified from 
effective-field theory [91], but the value of nΓ  has so far been 
determined only numerically for each value of n to reproduce 
finite-range calculations. These results suggest that, with the 
introduction of the parameters re and nΓ  characterising finite-
range corrections, the universality of Efimov physics may be 
extended beyond the window of validity of the zero-range 
theory.

2.1.3. Other interactions.
2.1.3.1. Coulomb interactions. Electrically charged particles 
are subjected to the Coulomb interaction. It is a long-range 
interaction, whose potential decays as 1/r, thus more slowly 
than 1/r3. For such interactions, there is no range beyond 
which the particles effectively cease to interact. Therefore, 
there is no Efimov physics associated with Coulomb interac-
tions themselves. However, particles interacting with short-
range interactions may also interact with additional Coulomb 
interactions due to their electric charge. Such is the case of 
protons or nuclei, which interact through the short-range 
nuclear forces as well as the repulsive Coulomb interaction. If 
the short-range interactions are resonant, there is an expected 
interplay between the 1/R2 Efimov attraction (2.33) and Cou-
lomb forces.

To our knowledge, this interplay has not been studied explic-
itly, due to the technical difficulties in solving the three-body 
problem with Coulomb interactions [92]. Nevertheless, some 
simple considerations can be made, as discussed by Vitaly 
Efimov in his original paper [1]. Since the Coulomb potential 
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Introduction.—Recently topological superconductors
have attracted great interest across many subfields in phys-
ics [1,2]. This is partially because vortices in topological
superconductors bind zero-energy Majorana fermions and
obey non-Abelian statistics, which can be of potential use
for fault-tolerance topological quantum computation [3,4].
A canonical example of such topological superconductors
is a p-wave paired state of spinless fermions in two
dimensions [5], which is believed to be realized in
Sr2RuO4 [6]. Previous mean-field studies revealed that a
topological quantum phase transition takes place across a
p-wave Feshbach resonance [7–9].

In this Letter, we study few-body physics of spinless
fermions in two dimensions right at the p-wave resonance.
We predict that three such fermions form an infinite tower of
bound states of orbital angular momentum ‘ ¼ "1 and their
binding energies obey a universal doubly exponential scaling

EðnÞ
3 / expð%2e3!n=4þ"Þ (1)

at large n. Here " is a nonuniversal constant defined modulo
3!=4. This novel phenomenon shall be termed a super
Efimov effect, because it resembles the Efimov effect in
which three spinless bosons in three dimensions right at an
s-wave resonance form an infinite tower of ‘ ¼ 0 bound
states whose binding energies obey the universal exponential

scaling EðnÞ
3 / e%2!n=s0 with s0 ' 1:00624 [10] (see Table I

for comparison).While the Efimov effect is possible in other
situations [11,12], it does not take place in two dimensions or
with p-wave interactions [12–14]. We also provide an indi-
cation that there are ‘ ¼ "2 four-body resonances associ-
ated with every three-body bound state at

EðnÞ
4 / expð%2e3!n=4þ"%0:188Þ; (2)

which also resembles the pair of four-body resonances in the
usual Efimov effect [15,16]. These universal few-body states

of resonantly interacting fermions in two dimensions should
be taken into account in future many-body studies beyond
the mean-field approximation.
Renormalization group analysis.—The above predic-

tions can be derived most conveniently by a renormaliza-
tion group (RG) analysis. The most general Lagrangian
density that includes up to marginal couplings consistent
with rotation and parity symmetries is

L ¼ c y
!
i@t þ

r2

2

"
c þ#y

a

!
i@t þ

r2

4
% "0

"
#a

þ g#y
ac ð%iraÞc þ gc yð%ir%aÞc y#a

þ v3c
y#y

a#ac þ v4#
y
a#

y
%a#%a#a

þ v0
4#

y
a#

y
a#a#a: (3)

Here and below, @ ¼ m ¼ 1, r" ( rx " iry, and sums
over repeated indices a ¼ " are assumed. c and#" fields
correspond to a spinless fermion and ‘ ¼ "1 composite
boson, respectively. The p-wave resonance is defined by
the divergence of the two-fermion scattering amplitude at
zero energy, which is achieved by tuning the bare detuning
parameter at "0 ¼ g2!2=ð2!Þ with ! being a momentum
cutoff.

TABLE I. Comparison of the Efimov effect versus the super
Efimov effect.

Efimov effect Super Efimov effect

Three bosons Three fermions
Three dimensions Two dimensions
s-wave resonance p-wave resonance
‘ ¼ 0 ‘ ¼ "1
Exponential scaling Doubly exponential scaling
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Our calculation indicates that when ρ/r0 is large, the three-
body system is subject to an emergent effective potential

Ueff(ρ) = − 1
4ρ2

−
s2

0 + 1/4

ρ2 ln2(ρ/r0)
. (10)

Given such a potential, one can use the WKB approximation
(or other methods) to show that the binding energies of
shallow bound states have the super Efimov form En =
E∗ exp(−2eπn/s0+θ ). Our numerical results of s0 agree well
with the universal scaling factor 4/3 predicted by Ref. [25].
Thus we show that the universal super Efimov states originate
from the universal effective potential Eq. (10).

The above conclusion is based on the adiabatic approx-
imation by neglecting interchannel couplings [cf. Eq. (5)].
For the Lennard-Jones, Gaussian, and Pöschl-Teller two-body
model potentials, we find numerically that the intercouplings
between the super Efimov channel µ = 0 and other channels
ν ̸= 0 have the asymptotic behaviors P0ν ∼ 1/ρ ln2(ρ) and
Q0ν ∼ 1/ρ2 ln2(ρ) when ρ is large. The effects of these
nonzero interchannel couplings on the super Efimov states
can be evaluated perturbatively in the following way. First, we
solve Eq. (4) at zero order by neglecting all the interchannel
couplings. The µ = 0 channel would produce the super Efimov
bound-state solutions f

(0)
0 (ρ) with negative eigenenergies E

while apart from any accidental coincidences, in any other
channels ν ̸= 0 there is only a trivial solution f (0)

ν (ρ) = 0
for the same energies E. Next, we substitute f

(0)
0 (ρ) into

Eq. (4) and solve f (1)
ν (ρ) for ν ̸= 0 to the first order of

the interchannel couplings. In the regime r0 ≪ ρ ≪ 1/|E|,
f

(0)
0 (ρ) ∼

√
ρ ln(ρ/r0) cos{s0 ln[ln(ρ/r0)] + ϕ}, with ϕ a

phase shift [28], which indicates f (1)
ν (ρ) ∼ f

(0)
0 (ρ)/ ln2(ρ/r0).

Thus in Eq. (4) the off-diagonal terms are expected to
be [2P0ν(d/dρ) + Q0ν]f (1)

ν (ρ) ∼ f
(0)
0 /ρ2 ln4(ρ/r0), negligi-

ble compared with the diagonal term Ueff(ρ)f (0)
0 (ρ); the

adiabatic approximation is justified in the regime ρ → ∞.
Three-body parameters. In the case of Efimov states, the

three-body parameter Ẽ∗ is originally believed to be not
universal and to be determined by short-range interaction de-
tails [2]. Surprisingly, recent experiments of ultracold atomic
gases found Ẽ∗ rather universal (in van der Waals units) [19].
Subsequent theoretical calculations [20–24] inspired by this
new discovery soon confirmed that when the long-range tail
of the two-body interaction is dominated by the van der
Waals form V (r) → −C6/r6, Ẽ∗ is universally determined
by the van der Waals length lvdW ≡ C

1/4
6 /2 or equivalently

the van der Waals energy EvdW ≡ −1/l2
vdW. This universality

of Ẽ∗ is attributed to the suppressed probability of finding
two particles at short distances where V (r) shows a deep
attractive well [20]. It is natural to ask the question whether the
three-body parameters for super Efimov states E∗ and θ are
also universal if the two-body interaction has the long-range
tail −C6/r6.

We use two-body model potentials V n
k (r) =

−C6/r6[1 − (βn/r)k] to study the three-body parameters
numerically. The short-range parameter βn is tuned such
that there are n p-wave two-body bound states including the
shallowest one at threshold. These two-body model potentials
have the same long-range van der Waals tail, but very different
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FIG. 2. (Color online) Universal effective potential Ueff for dif-
ferent two-body model potentials V n

k , with sharp avoid crossings
manually diabatized in some cases to improve visualization. An
example of the manual diabatization is shown in the inset for the
model potential V 2

6 . The sharp feature arising from an accidental
crossing between two channels represented by the red dashed-dotted
and the black dashed curves is manually eliminated to give the smooth
green solid curve.

short-range interactions determined by βn and k. The first
evidence of universality is the effective potential Ueff at short
range, as shown in Fig. 2, where a universal repulsive core
rises up at about ρ ≈ 2.2lvdW; it seems that the short-range
details of these different two-body model potentials have little
effect on those of the three-body effective potential Ueff . In
plotting Ueff in Fig. 2, we have manually diabatized the curves
to improve visualization. One example is shown in the inset
of Fig. 2, where a sharp feature arising from an accidental
crossing between the super Efimov channel and another
channel is manually eliminated. These kinds of sharp features
of Ueff at small ρ shall not be important for understanding
low-energy three-body observables.

Applying the numerical treatment similar to Ref. [35], we
calculate the three-body super Efimov ground-state energies
Eg for different V n

k (r). When the model potentials V n
k (r) can

support only one two-body bound state at threshold (n = 1),
the super Efimov channel is the lowest three-body channel;
the super Efimov states are true bound states and we obtain
their eigenenergies by diagonalizing the Hamiltonian directly.
When the model potentials support multiple two-body bound
states (n > 1), deeper three-body channels (atom-dimer chan-
nels) exist, and the super Efimov states become quasibound
states. It is known that when there is a quasibound state
buried in the continua, the scattering amplitude shows a Fano
resonance due to the interference between the continuum states
and the quasibound state [39]. In this case, we calculate the
scattering cross sections for the deeper atom-dimer channels
at energies close to those of the super Efimov states, and
locate resonances that can be fitted by a Fano line shape. The
resonance positions are interpreted as the super Efimov state
energies, and the widths of the resonances give the rates of the
super Efimov states decaying into atom-dimer states.
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R cosρ α= (2.23)

where R is the hyper-radius satisfying

R r r r r
2
3

2 2 2
12
2

23
2

31
2( )ρ= + = + + (2.24)

and α is the Delves hyper-angle. In these coordinates, one 
obtains the equation:

R R R R
k R

1 1
, 0

2

2 2

2

2
2

0( )
⎛
⎝⎜

⎞
⎠⎟α
χ α− ∂

∂
− ∂

∂
− ∂

∂
− = 

(2.25)
with the boundary condition for 0→α :

( )( )
→

( )⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠α

χ α χ
π

χ∂
∂

+ = −
α

R R R
a

R,
8
3

,
3

, 0 .0
0

0 0 (2.26)

The problem then becomes separable in R and α, for the case 
→ ± ∞a  corresponding to the unitary limit. Indeed, in this 

limit the right-hand side of equation (2.26) vanishes and one 
is left with a boundary condition at 0α =  that is independent 
of R. On the other hand, the other boundary condition (2.20) 
corresponds to R, 00 2

( )χ =π , which is a boundary condition at 

2
α = π that is also independent of R. One can thus find a solu-
tion of equation (2.25) in the form:

R F R,0( ) ( ) ( )χ α φ α= (2.27)

where φ satisfies sn
d

d
22

2 ( ) ( )φ α φ α− =
α

 with the boundary 

conditions at 0α =  and 2/α π= . This gives the following 
solutions:

ssin
2n n( ) ( )⎜ ⎟⎛

⎝
⎞
⎠φ α π α= − (2.28)

where sn is a solution of the equation:

π π− + =s s scos
2

8
3

sin
6

0.n n n( ) ( ) (2.29)

Each solution labelled by n constitutes a channel for the 
hyper-radial motion. That is to say, for each solution nφ  there 
is a corre sponding hyper-radial function Fn(R) such that 
F Rn n( ) ( )φ α  is a solution of equation  (2.25). It satisfies the 
equation:

R R R
s
R

k F R
1

0n
n

2

2

2

2
2 ( )

⎛
⎝⎜

⎞
⎠⎟− ∂

∂
− ∂

∂
+ − = (2.30)

which can be written as a one-dimensional Schrödinger 
equation:

R
V R k R F R 0n n

2

2
2( ) ( )

⎛
⎝⎜

⎞
⎠⎟− ∂

∂
+ − = (2.31)

with the hyper-radial potential,

V R
s

R
1 4

n
n
2

2
( ) /

=
−

 (2.32)

All solutions of equation (2.29) are real, except one denoted 
as ≈ ±s i1.006240  which is purely imaginary. As a result, the 
effective R 2∝ −  potential in equation  (2.30) is attractive for 

the channel n  =  0. This is in contrast with the non-interacting 
three-body problem, where the boundary condition  (2.26) is 
replaced by ( ) ⟶

→
χ αR, 0

r
0

0
, leading to equation  (2.28) with 

eigenvalues sn  =  2(n  +  1) that are all real. In this case, the 
effective R 2∝ −  potential equation (2.32) is repulsive for all n. 
This repulsion is interpreted as a generalised centrifugal bar-
rier due to the free motion of deformation of the three-body 
system. In the interacting problem at unitarity, however, the 
channel n  =  0 leads to an effective three-body attraction

( ) /
= −

| | +
V R

s

R

1 4
.0

0
2

2 
(2.33)

This unexpected attraction is the basis for Efimov physics and 
is referred to as the Efimov attraction. It can be interpreted as 
the result of a mediated attraction between two particles by 
exchange of the third particle.

The existence of this attraction shows that the zero-range 
theory for three bosons is not well defined. Indeed, equa-
tion (2.30) for n  =  0 is a Schrödinger equation for an attractive 
1/R2 potential, which is scale invariant since a R1 2/∝  potential 
scales as the kinetic energy Rd d2 2/∝  under a scaling transfor-
mation R R→ λ . It is known that such an equation admits a solu-
tion at any energy, and its spectrum is therefore not bounded 
from below [55, 56]. Indeed, if the equation admits a solution 
at energy E  <  0, making the scaling transformation R R→ λ  
with an arbitrary scaling factor λ gives another solution at 
energy E 02λ < . This means that under the Efimov attraction 
the three-boson system collapses on itself, a phenom enon 
discovered long ago by Thomas [18] and referred to as the 
‘Thomas collapse’ or ‘fall of the particles to the centre’. The 
same problem was found [57] in the for mulation of the zero-
range theory for three particles by an integral equation, known 
as the Skorniakov and Ter-Martorisian equation [19]. This is of 
course a shortcoming of the zero-range theory, since the finite-
range effects of the interaction can no longer be neglected 
when the distance between the three bosons becomes compa-
rable with the finite range of interactions6.

A practical solution to this problem, originally suggested 
by Gribov and demonstrated by Danilov [58], consists in 
imposing a condition on the solutions of the three-body equa-
tion, or a momentum cut-off on the equation [59], in order to 
reproduce a known three-body observable, such as a three-
body bound state energy or particle-dimer scattering prop-
erty. For instance, fixing the triton energy to the observed 
value, and solving the three-body equation with that condi-
tion enables the prediction of the neutron-deuteron scattering 
length [60].

In Vitaly Efimov’s formulation of the three-body prob-
lem in terms of equation  (2.30), a similar procedure can be 
achieved by imposing a boundary condition below some 
arbitrarily small hyper-radius R0. Thus, in addition to the 
Bethe–Peierls two-body boundary condition (2.7), the three-
body problem in the zero-range theory requires an extra three-
body boundary condition. This boundary condition can be 

6 Throughout this article and much of the cited literature, the expression 
‘finite range’ means a range that is not zero.
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fermionic Tonks gases in one dimension, and iii) uni-
tary Fermi gases in three dimensions. Weakly interacting
bosons or fermions in two dimensions are approximately
scale invariant systems when the quantum anomaly is
weak enough to be ignored. Therefore our proposal for
detecting the dynamic super Efimov shall be of interest
to many cold atom laboratories. Other synthetic sys-
tems that can realize a time dependent harmonic trap
can also demonstrate this e↵ect. Realizing the dynamic
super Efimov e↵ect will represent the first, as far as we
know, dynamic process in a quantum system with in-
triguing double-exponential scaling symmetry

General Formalism. For a scale invariance gas of N
particles in a spherical symmetric harmonic trap with
frequency !(t), the cloud size quantified by the mean

radius square of the gas particles, R2(t) = h
P

N

i=1 r
2
i

i,
satisfies the dynamic equation

d

3

dt

3
R2(t) + 4!2(t)

d

dt

R2(t) + 2
d!

2(t)

dt

R2(t) = 0, (5)

which can be derived by calculating directly the equation
of motion for R2(t) [15, 16]. The absence of interactions
in Eq. (5) is due to the emergent Schrödinger symmetry
in the scale invariant systems [17]. The solution to Eq. (5)
can be expressed as

R2(t) = C1f
2
1 + C2f1f2 + C3f

2
2 , (6)

where f

2
1 , f1f2 and f

2
2 are three linearly independent

functions, and f

a

(a = 1, 2) are two linearly independent
solutions of the second order di↵erential equation

d

2

dt

2
f + !

2(t)f = 0. (7)

Here C

a

(a = 1, 2, 3) are constants to be determined by
the initial conditions.

A hallmark of the super Efimov e↵ect is that the zero-
energy wave-function  , satifying �d

2
 /d

2
⇢+VSE(⇢) =

0, is double-log periodic in ⇢ [13, 14]. Comparing Eq. (7)
with Eq. (3), we can view time t as the hyper-radius ⇢
and f(t) as the real wave-function  (⇢); Eq. (7) becomes
a zero-energy Schrödinger equation along the radial di-
rection with potential �!2(⇢). The initial conditions of
the cloud size at t = t0 (t0 is the time at which the expan-
sion starts) are transcribed to the boundary conditions
at small radius ⇢.

Therefore, to realize the dynamic super Efimov e↵ect,
as shown in Fig. 1, we consider the situation that the
harmonic trap frequency !(t) is held at a constant value
!0 for t < t0, and decreases as Eq. (4) for t > t0. The
parameters !0 and t0 are correlated via !0 = !SE(t0).
We take the parameter t

⇤ smaller than t0. When � <

4, the solutions f(t) to Eq. (7), and consequently, R2,
exhibit exactly the same double-log periodicity behavior
as predicted for the super Efimov e↵ect [13, 14], which is

t0
t

!

0

!0

⇠ ! =
q

1
4t2

+ 1
�t2 log2 t/t⇤

t⇤

FIG. 1: A schematic plot of the time varying trapping fre-
quency !(t) for observing the dynamic super Efimov e↵ect.

given by

R2 = At log

✓
t

t

⇤

◆⇢
1 +B cos


s0 log

✓
log

✓
t

t

⇤

◆◆
+ '

��
,(8)

where s0 = 2
p
1/�� 1/4 is tunable by choosing �, and

A, B and ' are constants determined by the initial con-
ditions. Since we expand the gas cloud starting from
its equilibrium state at t = t0, the initial conditions are
R2|

t=t0 = R2
0 and d

dt

R2|
t=t0 = d

2

dt

2R2|
t=t0 = 0, where

R2
0 is the cloud size of the atomic gas at equilibrium

when t < t0. We can see from Eq. (8) that, on top of
a monotonically increasing function t log(t/t⇤), the cloud
size does exhibit a double-log periodic oscillation in the
time domain. While for � > 4, the solution becomes

R2 = At log
t

t

⇤


1 +B

✓
log

t

t

⇤

◆
�

+ C

✓
log

t

t

⇤

◆
��

�
, (9)

where � = 2
p
1/4� 1/�; the oscillation disappears.

Beyond the Super Efimov E↵ect. Based on the same
general formalism (5-7), previously we have success-
fully realized the dynamic Efimov e↵ect by implementing
!(t) = !E(t) ⌘ 1/(

p
�t) with � < 4 to match the e↵ec-

tive hyper-spherical potential VE(⇢) ⌘ �(s̃20 + 1/4)/⇢2

[15], which is known to be responsible for the three-body
Efimov e↵ect [1, 2]. Equation (7) indicates an intriguing
underlying connection between the super Efimov e↵ect
and the Efimov e↵ect, and suggests interesting e↵ects
beyond.
Let us start with the equation

d

2

dt

2
1

g1(t1) + !

2
1(t1)g1(t1) = 0 (10)

with !1(t1) = !E(t1), which is known to give rise to the
dynamic Efimov e↵ect [15]. We introduce the recursive
transformation

t

n+1 =e

tn
, (11)

g

n+1 =e

tn/2
g

n

. (12)
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FIG. 2: (a) The mean square of the cloud size R2(t)/R2
0,

where the dashed line denotes the trap frequency !(t) de-
creases from 500Hz to 50Hz. (b) R2(t)/(At log t/t⇤) as a func-
tion of log log(t/t⇤). Here we have set � = 0.005, t⇤ = 0.3ms.
The shaded area corresponds to an error bar of 5% of the
cloud size.

We find that g
n

(t
n

) for n > 1 generally satisfies

d

2

dt

2
n

g

n

(t
n

) + !

2
n

(t
n

)g
n

(t
n

) = 0 (13)

with !

2
n+1(tn+1) = [!2

n

(log t
n+1) + 1/4]/t2

n+1. For in-
stance, !2(t) is essentially !SE(t). In this sense, the dy-
namic Efimov e↵ect can “generate” the dynamic super
Efimov e↵ect; while g1(t1) has a single-log periodicity in
t1 [1, 2], g2(t2) shows a double-log periodicity in t2. In
general, by designing the dynamic variation of the har-
monic trapping frequency !(t) as !

n

(t), one can in prin-
ciple observe a nth order log periodicity in the cloud size
of a scale invariant gas. While it is relatively easy to
engineer !

n

(t) in the dynamic expansion, the possibility
of finding a corresponding e↵ective potential emerging in
multi-particle interacting systems is not clear.

Experimental Implementation. In Eq. (4), as � in-
creases, the trap frequency decreases faster with t; ac-
cordingly, from Eq. (8), both the amplitude and the pe-
riod of the double-log oscillation become larger. In prac-
tice, there shall be an upper limit for the initial trap fre-
quency !0 = !(t = t0), say, limited by the laser power;
there shall also be a lower limit for the final trap fre-
quency !f = !(t = tf), below which it is hard to control
and calibrate the trap frequency against other technical
noises. Given these two limits, we should optimize the
parameters � and t

⇤

, such that i) between tf and t0, there
are at least 2-3 oscillation periods, i.e., R2(t)/t log(t/t⇤)
shows at least three minima/maxima, to identify the

double-log periodicity; and ii) the amplitude of the oscil-
lation is large enough that the oscillation is visible despite
of the presence of experimental uncertainty in measuring
the cloud size.

In Fig. 2 we show that when !(t) decreases from 500Hz
to 50Hz within about 50ms, the mean square of the
cloud size R2(t) expands about ten times. When we plot
R2(t)/(At log t/t⇤), it exhibits a periodic oscillation in
term of log(log t/t⇤). The oscillation completes > 2 peri-
ods within 50ms and one can identify three minima from
this oscillation. In Fig. 2(b) we put a shaded area to
indicate an error bar of 5% of the cloud size; the error
bar is significantly smaller than the oscillation amplitude.
With this numerical simulation, we are confident that
this dynamic super Efimov e↵ect can be experimentally
observed.

Anisotropic Trap Potentials. Anisotropy of harmonic
traps generically exists in cold atom experiments for di-
mensions higher than one. Among the aforementioned
cold atom systems (i) to (iii) for realizing the super
Efimov e↵ect, (i) is a non-interacting system and the
equation-of-motion along each trap direction is decou-
pled, and therefore, it only requires the trap frequency
along one of the spatial direction behaving as Eq. (4),
along which the double-log periodicity can be detected;
(ii) is a one-dimensional system; and the trap anisotropy
is an issue only for system (iii).

To take into account the e↵ect of the trap anisotropy
on the super Efimovian expansion of system (iii), we con-
sider the situation

!
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, (14)

for t > t0, and !
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(t+0 ) for t < t0. Here
↵ = x, y, z. The many-body wave-function of the gas
 ({r

i

}, t) satisfies the Schrödinger equation

i@

t

 =
X

i


�r2

i

2
+

1

2
!

2
x

(t)x2
i

+
1

2
!

2
y

(t)y2
i

+
1

2
!

2
z

(t)z2
i

�
 

+
X

i2",j2#

V (r
i

� r
j

) , (15)

where the coordinates of the ith particle is r
i

= (x
i

, y

i

, z

i

)
and V is the inter-particle interaction potential. We have
taken the atomic mass m = 1. Motivated by the un-
derlying connection between the Efimov e↵ect and the
super Efimov e↵ect mentioned above, we perform the
following scaling transformation for all spatial-time co-
ordinates and a gauge transformation for the many-body
wave-function in the domain t > t0
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FIG. 2: (a) The mean square of the cloud size R2(t)/R2
0,

where the dashed line denotes the trap frequency !(t) de-
creases from 500Hz to 50Hz. (b) R2(t)/(At log t/t⇤) as a func-
tion of log log(t/t⇤). Here we have set � = 0.005, t⇤ = 0.3ms.
The shaded area corresponds to an error bar of 5% of the
cloud size.
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n+1. For in-
stance, !2(t) is essentially !SE(t). In this sense, the dy-
namic Efimov e↵ect can “generate” the dynamic super
Efimov e↵ect; while g1(t1) has a single-log periodicity in
t1 [1, 2], g2(t2) shows a double-log periodicity in t2. In
general, by designing the dynamic variation of the har-
monic trapping frequency !(t) as !

n

(t), one can in prin-
ciple observe a nth order log periodicity in the cloud size
of a scale invariant gas. While it is relatively easy to
engineer !

n

(t) in the dynamic expansion, the possibility
of finding a corresponding e↵ective potential emerging in
multi-particle interacting systems is not clear.

Experimental Implementation. In Eq. (4), as � in-
creases, the trap frequency decreases faster with t; ac-
cordingly, from Eq. (8), both the amplitude and the pe-
riod of the double-log oscillation become larger. In prac-
tice, there shall be an upper limit for the initial trap fre-
quency !0 = !(t = t0), say, limited by the laser power;
there shall also be a lower limit for the final trap fre-
quency !f = !(t = tf), below which it is hard to control
and calibrate the trap frequency against other technical
noises. Given these two limits, we should optimize the
parameters � and t

⇤

, such that i) between tf and t0, there
are at least 2-3 oscillation periods, i.e., R2(t)/t log(t/t⇤)
shows at least three minima/maxima, to identify the

double-log periodicity; and ii) the amplitude of the oscil-
lation is large enough that the oscillation is visible despite
of the presence of experimental uncertainty in measuring
the cloud size.

In Fig. 2 we show that when !(t) decreases from 500Hz
to 50Hz within about 50ms, the mean square of the
cloud size R2(t) expands about ten times. When we plot
R2(t)/(At log t/t⇤), it exhibits a periodic oscillation in
term of log(log t/t⇤). The oscillation completes > 2 peri-
ods within 50ms and one can identify three minima from
this oscillation. In Fig. 2(b) we put a shaded area to
indicate an error bar of 5% of the cloud size; the error
bar is significantly smaller than the oscillation amplitude.
With this numerical simulation, we are confident that
this dynamic super Efimov e↵ect can be experimentally
observed.

Anisotropic Trap Potentials. Anisotropy of harmonic
traps generically exists in cold atom experiments for di-
mensions higher than one. Among the aforementioned
cold atom systems (i) to (iii) for realizing the super
Efimov e↵ect, (i) is a non-interacting system and the
equation-of-motion along each trap direction is decou-
pled, and therefore, it only requires the trap frequency
along one of the spatial direction behaving as Eq. (4),
along which the double-log periodicity can be detected;
(ii) is a one-dimensional system; and the trap anisotropy
is an issue only for system (iii).

To take into account the e↵ect of the trap anisotropy
on the super Efimovian expansion of system (iii), we con-
sider the situation
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where the coordinates of the ith particle is r
i

= (x
i

, y

i

, z

i

)
and V is the inter-particle interaction potential. We have
taken the atomic mass m = 1. Motivated by the un-
derlying connection between the Efimov e↵ect and the
super Efimov e↵ect mentioned above, we perform the
following scaling transformation for all spatial-time co-
ordinates and a gauge transformation for the many-body
wave-function in the domain t > t0
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FIG. 2: The expansion dynamics of the cloud. A1 (B1) and A2 (B2) are the mean axial cloud size �z versus time and the
dimensionless mean square axial cloud size �2

z/(⌧ log(⌧)) verse the dimensionless time log(log(⌧)) at B = 832 Gauss; unitary
Fermi gas (B = 528 Gauss; an ideal non-interacting Fermi gas), respectively, where ⌧ = (t+ t0)/t⇤. Black, blue, and green dots
are measured data with t0 = 4 ms (�z = 2.7⇥ 10�3), t0 = 5 ms (�z = 1.5⇥ 10�3) and t0 = 6 ms (�z = 9⇥ 10�4), respectively.
Red dots are the expansion size of the cloud when �zis chosen as the critical point �z = 4. Solid red curves for the theoretical
fits based on Eq. 1. Here t⇤ = 0.2 ms. Error bars represent the standard deviation of the statistic.

the cloud expansion emerges when � < 4. The cloud
dynamics is then given by

hR2i = At log(t/t⇤){1 +B cos[s
0

log

✓
log(t/t⇤)

◆
+ �]},

(1)
where hR2i is the mean square cloud size and t⇤ is the
tunable parameters. A, B and � are constants deter-
mined by the initial conditions. s

0

⌘ !
b

p
1/�� 1/4

where !
b

is a factor related to the breathing mode fre-
quency; !

b

= 2 for the non-interacting gas and !
b

=p
12/5 for the anisotropic unitary Fermi gas along the

axial direction. In this letter, we report the first observa-
tion for such the super Efimovian expansion dynamics in
the unitary Fermi gas. An essential feature of the super
Efimov e↵ect, double-log periodicity, is revealed by mea-
suring the cloud size in the expansion. The novel dynam-
ics could be observed in any other scale invariant quan-
tum gases. The universality is verified both in the non-
interacting limit and in the unitarity limit. Compared
to previous Efimiovian expansion [12], observing super-
Efmovian evolution in such scale invariant Fermi gases re-
quires more precisely controlling the external harmonic
trap frequencies and represents a paradigm in probing
universal dynamics and allows in a new way benchmark-
ing with intriguing double-exponential scaling symmetry.

The experimental setup is similar to that Ref. [12, 30]
and the schematic is shown in Fig. 1A. We used a bal-
anced mixture of 6Li fermions in the two lowest hyper-
fine states | "i ⌘ |F = 1/2,M = �1/2i and | #i ⌘ |F =
1/2,M = 1/2i. The fermionic atoms are loaded into
a cross-dipole trap to perform evaporative cooling [30].
The resulting potential has a cylindrical symmetry with
the trap anisotropic frequency ratio !

r

/!
z

about 10. The
magnetically induced collisonal resonance is used to tune
the interaction of the atoms either at unitary regime
with the magnetic field B = 832 Gauss or at ideal non-
interacting regime with B = 528 Gauss. The system is
initially prepared in a stationary state at unitary with the
trap depth fixed at 0.5%U

0

for e↵ectively cooling where
U
0

is the full trap potential depth. The trap depth is then
raised to 2%U

0

and held for several hundreds of millisec-
onds for equilibrium of the gas. The energy of Fermi
gas is E = 0.8E

F

, corresponding to the temperature
T = 0.25T

F

, which E
F

and T
F

are the Fermi energy and
temperature of an ideal Fermi gas, respectively. The ini-
tial axial and radial trap frequency are !

z0

= 2⇡⇥ 255.8
Hz and !

r0

= 2⇡ ⇥ 2538.4 Hz, respectively. Subse-
quently the trap frequencies are lowered with the relation
as

p
1/4t2 + 1/t2� log(t/t⇤) to allow the cloud dynami-

cal expansion (Fig. 1B). After a time of evolution t
f

in



Take Home Message

Efimov Effect not only has rich context as a few-body 
effect, but also will show broad impact beyond few-
body physics.



Thank You Very Much for Attention !


